Akt/PKB signaling mechanisms in cancer and chemoresistance

被引:171
作者
Kim, D
Dan, HC
Park, S
Yang, L
Liu, QY
Kaneko, S
Ning, JY
He, LL
Yang, H
Sun, M
Nicosia, SV
Cheng, JQ
机构
[1] Univ S Florida, Coll Med, Dept Pathol, Tampa, FL 33612 USA
[2] Univ S Florida, Coll Med, Dept Interdisciplinary Oncol, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Tampa, FL 33612 USA
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2005年 / 10卷
关键词
Akt/PKB; apoptosis; cell growth; inhibitor; chemoresistance; review;
D O I
10.2741/1592
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During the past decade, Akt ( also known as protein kinase B, PKB) has been extensively studied. It regulates a variety of cellular processes by mediating extracellular ( mitogenic growth factor, insulin and stress) and intracellular ( altered tyrosine receptor kinases, Ras and Src) signals. Activation of Akt by these signals is via its pleckstrin homology (PH) domain binding to products of phosphatidylinositol 3-kinase (PI3K). This process is negatively regulated by a dual phosphatase PTEN tumor suppressor. Today, more than 30 Akt substrates have been identified. These phosphorylation events mediate the effects of Akt on cell survival, growth, differentiation, angiogenesis, migration and metabolism. Further, PI3K/PTEN/Akt pathway is frequently altered in many human malignancies and overexpression of Akt induces malignant transformation and chemoresistance. Thus, the Akt pathway is a major target for anti-cancer drug development. This review focuses on Akt signaling mechanism in oncogenesis and chemoresistance, and ongoing translational efforts to therapeutically target Akt.
引用
收藏
页码:975 / 987
页数:13
相关论文
共 159 条
[21]   Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner [J].
Castro, AF ;
Rebhun, JF ;
Clark, GJ ;
Quilliam, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (35) :32493-32496
[22]   AKT/PKB and other D3 phosphoinositide-regulated kinases: Kinase activation by phosphoinositide-dependent phosphorylation [J].
Chan, TO ;
Rittenhouse, SE ;
Tsichlis, PN .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :965-1014
[23]   Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells [J].
Chaudhury, LR ;
Hruska, KA .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2003, 89 (01) :1-5
[24]   Growth retardation and increased apoptosis in mice with homozygous disruption of the akt1 gene [J].
Chen, WS ;
Xu, PZ ;
Gottlob, K ;
Chen, ML ;
Sokol, K ;
Shiyanova, T ;
Roninson, I ;
Weng, W ;
Suzuki, R ;
Tobe, K ;
Kadowaki, T ;
Hay, N .
GENES & DEVELOPMENT, 2001, 15 (17) :2203-2208
[25]   Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway [J].
Cheng, JQ ;
Jiang, XX ;
Fraser, M ;
Li, M ;
Dan, HC ;
Sun, M ;
Tsang, BK .
DRUG RESISTANCE UPDATES, 2002, 5 (3-4) :131-146
[26]   AKT2, A PUTATIVE ONCOGENE ENCODING A MEMBER OF A SUBFAMILY OF PROTEIN-SERINE THREONINE KINASES, IS AMPLIFIED IN HUMAN OVARIAN CARCINOMAS [J].
CHENG, JQ ;
GODWIN, AK ;
BELLACOSA, A ;
TAGUCHI, T ;
FRANKE, TF ;
HAMILTON, TC ;
TSICHLIS, PN ;
TESTA, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (19) :9267-9271
[27]   Transforming activity and mitosis-related expression of the AKT2 oncogene: Evidence suggesting a link between cell cycle regulation and oncogenesis [J].
Cheng, JQ ;
Altomare, DA ;
Klein, MA ;
Lee, WC ;
Kruh, GD ;
Lissy, NA ;
Testa, JR .
ONCOGENE, 1997, 14 (23) :2793-2801
[28]   Amplification of AKT2 in human pancreatic cancer cells and inhibition of ATK2 expression and tumorigenicity by antisense RNA [J].
Cheng, JQ ;
Ruggeri, B ;
Klein, WM ;
Sonoda, G ;
Altomare, DA ;
Watson, DK ;
Testa, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (08) :3636-3641
[29]   Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice [J].
Cho, H ;
Thorvaldsen, JL ;
Chu, QW ;
Feng, F ;
Birnbaum, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (42) :38349-38352
[30]   Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ) [J].
Cho, H ;
Mu, J ;
Kim, JK ;
Thorvaldsen, JL ;
Chu, QW ;
Crenshaw, EB ;
Kaestner, KH ;
Bartolomei, MS ;
Shulman, GI ;
Birnbaum, MJ .
SCIENCE, 2001, 292 (5522) :1728-1731