Akt/PKB signaling mechanisms in cancer and chemoresistance

被引:171
作者
Kim, D
Dan, HC
Park, S
Yang, L
Liu, QY
Kaneko, S
Ning, JY
He, LL
Yang, H
Sun, M
Nicosia, SV
Cheng, JQ
机构
[1] Univ S Florida, Coll Med, Dept Pathol, Tampa, FL 33612 USA
[2] Univ S Florida, Coll Med, Dept Interdisciplinary Oncol, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Tampa, FL 33612 USA
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2005年 / 10卷
关键词
Akt/PKB; apoptosis; cell growth; inhibitor; chemoresistance; review;
D O I
10.2741/1592
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During the past decade, Akt ( also known as protein kinase B, PKB) has been extensively studied. It regulates a variety of cellular processes by mediating extracellular ( mitogenic growth factor, insulin and stress) and intracellular ( altered tyrosine receptor kinases, Ras and Src) signals. Activation of Akt by these signals is via its pleckstrin homology (PH) domain binding to products of phosphatidylinositol 3-kinase (PI3K). This process is negatively regulated by a dual phosphatase PTEN tumor suppressor. Today, more than 30 Akt substrates have been identified. These phosphorylation events mediate the effects of Akt on cell survival, growth, differentiation, angiogenesis, migration and metabolism. Further, PI3K/PTEN/Akt pathway is frequently altered in many human malignancies and overexpression of Akt induces malignant transformation and chemoresistance. Thus, the Akt pathway is a major target for anti-cancer drug development. This review focuses on Akt signaling mechanism in oncogenesis and chemoresistance, and ongoing translational efforts to therapeutically target Akt.
引用
收藏
页码:975 / 987
页数:13
相关论文
共 159 条
[41]   IAP family proteins - suppressors of apoptosis [J].
Deveraux, QL ;
Reed, TC .
GENES & DEVELOPMENT, 1999, 13 (03) :239-252
[42]   Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases [J].
Deveraux, QL ;
Leo, E ;
Stennicke, HR ;
Welsh, K ;
Salvesen, GS ;
Reed, JC .
EMBO JOURNAL, 1999, 18 (19) :5242-5251
[43]   IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases [J].
Deveraux, QL ;
Roy, N ;
Stennicke, HR ;
Van Arsdale, T ;
Zhou, Q ;
Srinivasula, SM ;
Alnemri, ES ;
Salvesen, GS ;
Reed, JC .
EMBO JOURNAL, 1998, 17 (08) :2215-2223
[44]   Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation [J].
Dimmeler, S ;
Fleming, I ;
Fisslthaler, B ;
Hermann, C ;
Busse, R ;
Zeiher, AM .
NATURE, 1999, 399 (6736) :601-605
[45]  
Dong ZG, 1999, ANTICANCER RES, V19, P3743
[46]   Insulin-like growth factor 1 and oestradiol promote cell proliferation of MCF-7 breast cancer cells: new insights into their synergistic effects [J].
Dupont, J ;
Le Roith, D .
JOURNAL OF CLINICAL PATHOLOGY-MOLECULAR PATHOLOGY, 2001, 54 (03) :149-154
[47]   Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions [J].
Eskes, R ;
Antonsson, B ;
Osen-Sand, A ;
Montessuit, S ;
Richter, C ;
Sadoul, R ;
Mazzei, G ;
Nichols, A ;
Martinou, JC .
JOURNAL OF CELL BIOLOGY, 1998, 143 (01) :217-224
[48]   Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase [J].
Feng, JH ;
Park, J ;
Cron, P ;
Hess, D ;
Hemmings, BA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (39) :41189-41196
[49]   THE PROTEIN-KINASE ENCODED BY THE AKT PROTOONCOGENE IS A TARGET OF THE PDGF-ACTIVATED PHOSPHATIDYLINOSITOL 3-KINASE [J].
FRANKE, TF ;
YANG, SI ;
CHAN, TO ;
DATTA, K ;
KAZLAUSKAS, A ;
MORRISON, DK ;
KAPLAN, DR ;
TSICHLIS, PN .
CELL, 1995, 81 (05) :727-736
[50]  
Fraser M, 2003, CANCER RES, V63, P7081