Stability of stationary states in the cubic nonlinear Schrodinger equation: Applications to the Bose-Einstein condensate

被引:59
作者
Carr, LD [1 ]
Kutz, JN
Reinhardt, WP
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[3] Univ Washington, Dept Chem, Seattle, WA 98195 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 06期
关键词
D O I
10.1103/PhysRevE.63.066604
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The cubic nonlinear Schrodinger equation is the quasi-one-dimensional limit of the mean-field theory which models dilute gas Bose-Einstein condensates. Stationary solutions of this equation can be characterized as soliton trains. It is demonstrated that for repulsive nonlinearity a soliton train is stable to initial stochastic perturbation, while for attractive nonlinearity its behavior depends on the spacing between individual solitons in the train. Toroidal and harmonic confinement, both of experimental interest for Bose-Einstein condensates, are considered.
引用
收藏
页数:9
相关论文
共 52 条
[1]   Self-stabilization of dense soliton trains in a passively mode-locked ring laser [J].
Arbel, D ;
Orenstein, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1999, 35 (06) :977-982
[2]   Stability criterion for attractive Bose-Einstein condensates -: art. no. 023607 [J].
Bergé, L ;
Alexander, TJ ;
Kivshar, YS .
PHYSICAL REVIEW A, 2000, 62 (02) :6
[3]  
BOWMAN F, 1961, INTRO ELLIPTIC FUNCT
[4]   Analysis of in situ images of Bose-Einstein condensates of lithium [J].
Bradley, CC ;
Sackett, CA ;
Hulet, RG .
PHYSICAL REVIEW A, 1997, 55 (05) :3951-3953
[5]   EVIDENCE OF BOSE-EINSTEIN CONDENSATION IN AN ATOMIC GAS WITH ATTRACTIVE INTERACTIONS [J].
BRADLEY, CC ;
SACKETT, CA ;
TOLLETT, JJ ;
HULET, RG .
PHYSICAL REVIEW LETTERS, 1995, 75 (09) :1687-1690
[6]   Dark solitons in Bose-Einstein condensates [J].
Burger, S ;
Bongs, K ;
Dettmer, S ;
Ertmer, W ;
Sengstock, K ;
Sanpera, A ;
Shlyapnikov, GV ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (25) :5198-5201
[7]   Motion of dark solitons in trapped Bose-Einstein condensates [J].
Busch, T ;
Anglin, JR .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2298-2301
[8]   Dynamics of the Bose-Einstein condensate: quasi-one-dimension and beyond [J].
Carr, LD ;
Leung, MA ;
Reinhardt, WP .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (19) :3983-4001
[9]   Stationary solutions of the one-dimensional nonlinear Schrodinger equation. I. Case of repulsive nonlinearity [J].
Carr, LD ;
Clark, CW ;
Reinhardt, WP .
PHYSICAL REVIEW A, 2000, 62 (06) :063610-063611
[10]   Stationary solutions of the one-dimensional nonlinear Schrodinger equation. II. Case of attractive nonlinearity [J].
Carr, LD ;
Clark, CW ;
Reinhardt, WP .
PHYSICAL REVIEW A, 2000, 62 (06) :063611-063611