A note on minimum distance estimation of copula densities

被引:18
作者
Biau, G
Wegkamp, M
机构
[1] Univ Montpellier 2, Inst Math & Modelisat Montpellier, UMR 5149, CNRS,Equipe Probabil & Stat, F-34095 Montpellier, France
[2] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
关键词
copula densities; empirical copula process; minimum distance estimation;
D O I
10.1016/j.spl.2005.02.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a minimum L, distance estimate for parametric copula densities. It is shown that the expected L, error of the estimate is within a given constant multiple of the best possible error plus an additive remainder term which is small under mild assumptions. The proof is based on an oracle inequality and a maximal inequality for the empirical copula process indexed by sets. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:105 / 114
页数:10
相关论文
共 22 条
[1]   Density estimation by the penalized combinatorial method [J].
Biau, G ;
Devroye, L .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 94 (01) :196-208
[2]   A note on density model size testing [J].
Biau, R ;
Devroye, L .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (03) :576-581
[3]   A note on penalized minimum distance estimation in nonparametric regression [J].
Bunea, F ;
Wegkamp, MH .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (03) :267-274
[4]  
CHEN X, 2002, ESTIMATION COPULA BA
[5]  
DEHEUVELS P, 1979, B CL SCI AC ROY BELG, V65, P274
[6]  
Devroye Luc, 2001, COMBINATORIAL METHOD
[7]   CENTRAL LIMIT-THEOREMS FOR EMPIRICAL MEASURES [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1978, 6 (06) :899-929
[8]   Weak convergence of empirical copula processes [J].
Fermanian, JD ;
Radulovic, D ;
Wegkamp, M .
BERNOULLI, 2004, 10 (05) :847-860
[9]  
G?nssler P., 1987, SEM EMP PROC DMV SEM, V9
[10]   Estimation and selection procedures in regression:: an L1 approach [J].
Hengartner, N ;
Wegkamp, M .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (04) :621-632