Density estimation by the penalized combinatorial method

被引:8
作者
Biau, G
Devroye, L
机构
[1] Univ Paris 06, Lab Stat Theor & Appl, F-75013 Paris, France
[2] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2V6, Canada
关键词
multivariate density estimation; Vapnik-Chervonenkis dimension; mixture densities; penalization;
D O I
10.1016/j.jmva.2004.04.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let f be an unknown multivariate density belonging to a prespecified parametric class of densities, F-k, where k is unknown, but F-k subset of Tk+1 for all k and each F-k has finite Vapnik-Chervonenkis dimension. Given an i.i.d. sample of size n drawn from f, we show that it is possible to select automatically, and without extra restrictions on f, an estimate f with the property that E{integral vertical bar f(n,k) - f vertical bar} = O(1/root n). Our method is inspired by the combinatorial tools developed in Devroye and Lugosi (Combinatorial Methods in Density Estimation, Springer, New York, 2001) and it includes a wide range of density models, such as mixture models or exponential families. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:196 / 208
页数:13
相关论文
共 49 条
[1]  
[Anonymous], 1982, ESTIMATION DEPENDENC
[2]   Risk bounds for model selection via penalization [J].
Barron, A ;
Birgé, L ;
Massart, P .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (03) :301-413
[3]  
BARRON A, 1991, NATO ASI SER, P501
[4]   APPROXIMATION OF DENSITY-FUNCTIONS BY SEQUENCES OF EXPONENTIAL-FAMILIES [J].
BARRON, AR ;
SHEU, CH .
ANNALS OF STATISTICS, 1991, 19 (03) :1347-1369
[5]   A note on density model size testing [J].
Biau, R ;
Devroye, L .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (03) :576-581
[6]  
Billingsley P., 1986, PROBABILITY MEASURE
[7]  
Bishop C. M., 1994, NCRG94004 AST U DEP
[8]   A note on penalized minimum distance estimation in nonparametric regression [J].
Bunea, F ;
Wegkamp, MH .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (03) :267-274
[9]   Histograms selection with an Akaike type criterion [J].
Castellan, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (08) :729-732
[10]   Computational and inferential difficulties with mixture posterior distributions. [J].
Celeux, G ;
Hurn, M ;
Robert, CP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (451) :957-970