Anisotropic mesh adaptation for the solution of the Stefan problem

被引:49
作者
Belhamadia, Y [1 ]
Fortin, A [1 ]
Chamberland, É [1 ]
机构
[1] Univ Laval, GIREF, Dept Math & Stat, Bur 2986, Quebec City, PQ G1K 7P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Stefan problem; phase change; phase-field formulation; finite element method; hierarchical error estimator; anisotropic mesh adaptation;
D O I
10.1016/j.jcp.2003.09.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new finite element formulation for the solution of the classical Stefan problem is introduced. it is obtained by a slight modification of the phase-field formulation used for dendritic growth where both the phase-field 0 and the temperature T are discretized. An anisotropic mesh adaptation strategy is also presented to further increase the accuracy of the method. Numerical results for two-dimensional examples illustrating the performance and accuracy of the proposed method are presented. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:233 / 255
页数:23
相关论文
共 14 条
[1]   A POSTERIORI ERROR-ESTIMATES BASED ON HIERARCHICAL BASES [J].
BANK, RE ;
SMITH, RK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) :921-935
[2]   A simple analysis of some a posteriori error estimates [J].
Bank, RE .
APPLIED NUMERICAL MATHEMATICS, 1998, 26 (1-2) :153-164
[3]   A moving mesh finite element method for the solution of two-dimensional Stefan problems [J].
Beckett, G ;
Mackenzie, JA ;
Robertson, ML .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 168 (02) :500-518
[4]   A characteristic Galerkin method with adaptive error control for the continuous casting problem [J].
Chen, ZM ;
Nochetto, RH ;
Schmidt, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 189 (01) :249-276
[5]  
FORTIN A, 2003, UNPUB COMMUN NUMER M
[6]   A P1-P1 finite element method for a phase relaxation model I:: Quasi-uniform mesh [J].
Jiang, X ;
Nochetto, RH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (03) :1176-1190
[7]   A P1-P1 finite element method for a phase relaxation model II:: Adaptively refined meshes [J].
Jiang, X ;
Nochetto, RH ;
Verdi, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :974-999
[8]   The numerical solution of one-dimensional phase change problems using an adaptive moving mesh method [J].
Mackenzie, JA ;
Robertson, ML .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 161 (02) :537-557
[9]   A moving mesh method for the solution of the one-dimensional phase-field equations [J].
Mackenzie, JA ;
Robertson, ML .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 181 (02) :526-544
[10]  
NDIKUMAGENGE F, 2001, THESIS LAVAL U