A version of Thirring's approach to the Kolmogorov-Arnold-Moser theorem for quadratic Hamiltonians with degenerate twist

被引:9
作者
Chandre, C [1 ]
Jauslin, HR [1 ]
机构
[1] Univ Bourgogne, CNRS, Phys Lab, F-21011 Dijon, France
关键词
D O I
10.1063/1.532599
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a proof of the Kolmogorov-Arnold-Moser (KAM) theorem on the existence of invariant tori for weakly perturbed Hamiltonian systems, based on Thirring's approach for Hamiltonians that are quadratic in the action variables. The main point of this approach is that the iteration of canonical transformations on which the proof is based stays within the space of quadratic Hamiltonians. We show that Thirring's proof for nondegenerate Hamiltonians can be adapted to Hamiltonians with degenerate twist. This case, in fact, drastically simplifies Thirring's proof. (C) 1998 American Institute of Physics. [S0022-2488(98)00611-2].
引用
收藏
页码:5856 / 5865
页数:10
相关论文
共 21 条
[1]  
Arnold V. I., 1963, RUSS MATH SURV, V18, P13, DOI DOI 10.1070/RM1963V018N05ABEH004130
[2]  
Arnold V. I., 1963, RUSS MATH SURV, V18, P91, DOI [DOI 10.1070/RM1963V018N06ABEH001143, 10.1070/RM1963v018n06ABEH001143]
[3]   A PROOF OF KOLMOGOROV THEOREM ON INVARIANT TORI USING CANONICAL-TRANSFORMATIONS DEFINED BY THE LIE METHOD [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A ;
STRELCYN, JM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1984, 79 (02) :201-223
[4]   A PROOF OF THE ISOENERGETIC KAM-THEOREM FROM THE ORDINARY ONE [J].
BROER, HW ;
HUITEMA, GB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) :52-60
[5]   Universality for the breakup of invariant tori in Hamiltonian flows [J].
Chandre, C ;
Govin, M ;
Jauslin, HR ;
Koch, H .
PHYSICAL REVIEW E, 1998, 57 (06) :6612-6617
[6]   Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems [J].
Chandre, C ;
Govin, M ;
Jauslin, HR .
PHYSICAL REVIEW E, 1998, 57 (02) :1536-1543
[7]   EXISTENCE OF KAM TORI IN DEGENERATE HAMILTONIAN-SYSTEMS [J].
CHENG, CQ ;
SUN, YS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 114 (01) :288-335
[8]   Effective stability and KAM theory [J].
Delshams, A ;
Gutierrez, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 128 (02) :415-490
[9]   TWISTLESS KAM TORI [J].
GALLAVOTTI, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (01) :145-156