Submicrometer dimple array based interference color field displays and sensors

被引:11
作者
Lezec, H. J.
McMahon, J. J.
Nalamasu, O.
Ajayan, P. M. [1 ]
机构
[1] CALTECH, Thomas J Watson Lab Appl Phys, Pasadena, CA 91125 USA
[2] CNRS, F-75794 Paris 16, France
[3] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[4] Rensselaer Polytech Inst, Ctr Integrated Elect, Troy, NY 12180 USA
关键词
D O I
10.1021/nl062425a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a technique for producing bright color fields over extended surfaces, via optical interference, with the capability of producing arbitrary visible colors in areas as small as 100 mu m(2). Periodic arrays of submicrometer dimples are fabricated on reflective silicon surfaces, and diffraction-induced mutual interference of light reflected from the upper and lower levels of the dimpled surfaces generates color depending on wavelength scaled dimple depth and periodicity. Colors of the entire visible spectrum can be generated by dimple arrays with different dimple depths. The topological permeability of such an open surface readily allows infusion of liquids, with different refractive indices, for color switching and detection. These easy to fabricate, scalable, robust devices, on solid as well as flexible supports, could find a wide range of applications such as cheap high-resolution printable dye/pigment-free displays, reliable index-of-refraction sensors with color readout for liquids, and lab-on-chip liquid flow monitors.
引用
收藏
页码:329 / 333
页数:5
相关论文
共 21 条
[1]   Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores [J].
Anderson, MA ;
Tinsley-Bown, A ;
Allcock, P ;
Perkins, EA ;
Snow, P ;
Hollings, M ;
Smith, RG ;
Reeves, C ;
Squirrell, DJ ;
Nicklin, S ;
Cox, TI .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2003, 197 (02) :528-533
[2]  
BAILEY RC, 2005, MAT TODAY APR, P46
[3]   The grating light valve: Revolutionizing display technology [J].
Bloom, DM .
PROJECTION DISPLAYS III, 1997, 3013 :165-171
[4]   Identification of gram negative bacteria using nanoscale silicon microcavities [J].
Chan, S ;
Horner, SR ;
Fauchet, PM ;
Miller, BL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (47) :11797-11798
[5]   Biomolecular screening with encoded porous-silicon photonic crystals [J].
Cunin, F ;
Schmedake, TA ;
Link, JR ;
Li, YY ;
Koh, J ;
Bhatia, SN ;
Sailor, MJ .
NATURE MATERIALS, 2002, 1 (01) :39-41
[6]   A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface [J].
Dancil, KPS ;
Greiner, DP ;
Sailor, MJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (34) :7925-7930
[7]   Porous-silicon vapor sensor based on laser interferometry [J].
Gao, J ;
Gao, T ;
Sailor, MJ .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :901-903
[8]   Video-speed electronic paper based on electrowetting [J].
Hayes, RA ;
Feenstra, BJ .
NATURE, 2003, 425 (6956) :383-385
[9]   High-transmission electrowetting light valves [J].
Heikenfeld, J ;
Steckl, AJ .
APPLIED PHYSICS LETTERS, 2005, 86 (15) :1-3
[10]   Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials [J].
Holtz, JH ;
Asher, SA .
NATURE, 1997, 389 (6653) :829-832