Graphene-Silicon Schottky Diodes

被引:443
作者
Chen, Chun-Chung [1 ]
Aykol, Mehmet [1 ]
Chang, Chia-Chi [1 ]
Levi, A. F. J. [1 ]
Cronin, Stephen B. [1 ]
机构
[1] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
Graphene; silicon; Schottky; diode; photocurrent; RAMAN-SPECTROSCOPY; BAND-GAP; TRANSPORT; TRANSISTORS; MOBILITY; CONTACT; STRAIN;
D O I
10.1021/nl104364c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have fabricated graphene-silicon Schottky diodes by depositing mechanically exfoliated graphene on top of silicon substrates. The resulting current voltage characteristics exhibit rectifying diode behavior with a barrier energy of 0.41 eV on n-type silicon and 0.45 eV on p-type silicon at the room temperature. The I-V characteristics measured at 100, 300, and 400 K indicate that temperature strongly influences the ideality factor of graphene silicon Schottky diodes. The ideality factor, however, does not depend strongly on the number of graphene layers. The optical transparency of the thin graphene layer allows the underlying silicon substrate to absorb incident laser light and generate a photocurrent. Spatially resolved photocurrent measurements reveal the importance of inhomogeneity and series resistance in the devices.
引用
收藏
页码:1863 / 1867
页数:5
相关论文
共 42 条
[2]  
[Anonymous], REV MOD PHYS UNPUB
[3]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[4]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy [J].
Chen, Shanshan ;
Brown, Lola ;
Levendorf, Mark ;
Cai, Weiwei ;
Ju, Sang-Yong ;
Edgeworth, Jonathan ;
Li, Xuesong ;
Magnuson, Carl W. ;
Velamakanni, Aruna ;
Piner, Richard D. ;
Kang, Junyong ;
Park, Jiwoong ;
Ruoff, Rodney S. .
ACS NANO, 2011, 5 (02) :1321-1327
[7]   Charge Transport in Disordered Graphene-Based Low Dimensional Materials [J].
Cresti, Alessandro ;
Nemec, Norbert ;
Biel, Blanca ;
Niebler, Gabriel ;
Triozon, Francois ;
Cuniberti, Gianaurelio ;
Roche, Stephan .
NANO RESEARCH, 2008, 1 (05) :361-394
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[10]   A current-voltage model for Schottky-barrier graphene-based transistors [J].
Jimenez, David .
NANOTECHNOLOGY, 2008, 19 (34)