Interaction of urea with amino acids:: Implications for urea-induced protein denaturation

被引:286
作者
Stumpe, Martin C. [1 ]
Grubmueller, Helmut [1 ]
机构
[1] Max Planck Inst Biophys Chem, Dept Theoret & Computat Biophys, D-37077 Gottingen, Germany
关键词
D O I
10.1021/ja076216j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The molecular mechanism of urea-induced protein denaturation is not yet fully understood. Mainly two opposing mechanisms are controversially discussed, according to which either hydrophobic, or polar interactions are the dominant driving force. To resolve this question, we have investigated the interactions between urea and all 20 amino acids by comprehensive molecular dynamics simulations of 22 tripeptides. Calculation of atomic contact frequencies between the amino acids and solvent molecules revealed a clear profile of solvation preferences by either water or urea. Almost all amino acids showed preference for contacts with urea molecules, whereas charged and polar amino acids were found to have slight preferences for contact with water molecules. Particularly strong preference for contacts to urea were seen for aromatic and apolar side-chains, as well as for the protein backbone of all amino acids. Further, protein-urea hydrogen bonds were found to be significantly weaker than protein-water or water-water hydrogen bonds. Our results suggest that hydrophobic interactions are the dominant driving force, while hydrogen bonds between urea and the protein backbone contribute markedly to the overall energetics by avoiding unfavorable unsatisfied hydrogen bond sites on the backbone. In summary, we suggest a combined mechanism that unifies the two current and seemingly opposing views.
引用
收藏
页码:16126 / 16131
页数:6
相关论文
共 63 条
[1]   Theoretical study of strong hydrogen bonds between neutral molecules: The case of amine oxides and phosphine oxides as hydrogen bond acceptors [J].
Alkorta, I ;
Elguero, J .
JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (02) :272-279
[2]   SOLVENT DENATURATION AND STABILIZATION OF GLOBULAR-PROTEINS [J].
ALONSO, DOV ;
DILL, KA .
BIOCHEMISTRY, 1991, 30 (24) :5974-5985
[3]   The chemical nature of hydrogen bonding in proteins via NMR:: J-couplings, chemical shifts, and AIM theory [J].
Arnold, WD ;
Oldfield, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (51) :12835-12841
[4]  
ASTRAND PO, 1994, J PHYS CHEM-US, V98, P8224
[5]   Predicting the energetics of osmolyte-induced protein folding/unfolding [J].
Auton, M ;
Bolen, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (42) :15065-15068
[6]   The molecular basis for the chemical denaturation of proteins by urea [J].
Bennion, BJ ;
Daggett, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :5142-5147
[7]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[8]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[9]   SUGGESTIONS FOR SAFE RESIDUE SUBSTITUTIONS IN SITE-DIRECTED MUTAGENESIS [J].
BORDO, D ;
ARGOS, P .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 217 (04) :721-729
[10]   Effect of urea on peptide conformation in water: Molecular dynamics and experimental characterization [J].
Caballero-Herrera, A ;
Nordstrand, K ;
Berndt, KD ;
Nilsson, L .
BIOPHYSICAL JOURNAL, 2005, 89 (02) :842-857