From anomalous energy diffusion to levy walks and heat conductivity in one-dimensional systems

被引:111
作者
Cipriani, P
Denisov, S
Politi, A
机构
[1] Ist Nazl Ott Applicata, D-01187 Dresden, Germany
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
D O I
10.1103/PhysRevLett.94.244301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The evolution of infinitesimal, localized perturbations is investigated in a one-dimensional diatomic gas of hard-point particles (HPG) and thereby connected to energy diffusion. As a result, a Levy walk description, which was so far invoked to explain anomalous heat conductivity in the context of noninteracting particles is here shown to extend to the general case of truly many-body systems. Our approach does not only provide firm evidence that energy diffusion is anomalous in the HPG, but proves definitely superior to direct methods for estimating the divergence rate of heat conductivity which turns out to be 0.333 +/- 0.004, in perfect agreement with the dynamical renormalization-group prediction (1/3).
引用
收藏
页数:4
相关论文
共 26 条
[11]   HEAT-FLOW IN AN EXACTLY SOLVABLE MODEL [J].
KIPNIS, C ;
MARCHIORO, C ;
PRESUTTI, E .
JOURNAL OF STATISTICAL PHYSICS, 1982, 27 (01) :65-74
[12]   DYNAMICALLY GENERATED ENHANCED DIFFUSION - THE STATIONARY STATE CASE [J].
KLAFTER, J ;
ZUMOFEN, G .
PHYSICA A, 1993, 196 (01) :102-115
[13]   Heat conduction in chains of nonlinear oscillators [J].
Lepri, S ;
Livi, R ;
Politi, A .
PHYSICAL REVIEW LETTERS, 1997, 78 (10) :1896-1899
[14]   Universality of anomalous one-dimensional heat conductivity [J].
Lepri, S ;
Livi, R ;
Politi, A .
PHYSICAL REVIEW E, 2003, 68 (06)
[15]   Thermal conduction in classical low-dimensional lattices [J].
Lepri, S ;
Livi, R ;
Politi, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 377 (01) :1-80
[16]  
LEPRI S, COMMUNICATION
[17]   Heat conductivity in linear mixing systems [J].
Li, BW ;
Casati, G ;
Wang, J .
PHYSICAL REVIEW E, 2003, 67 (02) :4
[18]   Finite thermal conductivity in 1D models having zero Lyapunov exponents [J].
Li, BW ;
Wang, L ;
Hu, BB .
PHYSICAL REVIEW LETTERS, 2002, 88 (22) :4
[19]   Anomalous heat conduction and anomalous diffusion in one-dimensional systems [J].
Li, BW ;
Wang, J .
PHYSICAL REVIEW LETTERS, 2003, 91 (04) :1-044301
[20]   Comment on "Anomalous heat conduction and anomalous diffusion in one-dimensional systems" [J].
Metzler, R ;
Sokolov, IM .
PHYSICAL REVIEW LETTERS, 2004, 92 (08) :1-89402