Approximation of sigmoid function and the derivative for hardware implementation of artificial neurons

被引:70
作者
Basterretxea, K
Tarela, JM
del Campo, I
机构
[1] Univ Basque Country, EHU, Elektron Telekomunikazio Saila, IITUE Bilbao, Bilbao 48012, Bizkaia, Spain
[2] Univ Basque Country, EHU, Elekt Elektron Saila, Leioa 48940, Bizkaia, Spain
来源
IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS | 2004年 / 151卷 / 01期
关键词
D O I
10.1049/ip-cds:20030607
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A piecewise linear recursive approximation scheme is applied to the computation of the sigmoid function and its derivative in artificial neurons with learning capability. The scheme provides high approximation accuracy with very low memory requirements. The recursive nature of this method allows for the control of the rate accuracy/computation-delay just by modifying one parameter with no impact on the occupied area. The error analysis shows an accuracy comparable to or better than other reported piecewise linear approximation schemes. No multiplier is needed for a digital implementation of the sigmoid generator and only one memory word is required to store the parameter that optimises the approximation.
引用
收藏
页码:18 / 24
页数:7
相关论文
共 10 条
[1]  
ALIPPI C, 1991, P IEEE INT S CIRC SY, P1505
[2]   Piecewise linear approximation applied to nonlinear function of a neural network [J].
Amin, H ;
Curtis, KM ;
Hayes-Gill, BR .
IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 1997, 144 (06) :313-317
[3]  
Basterretxea K., 2002, P 4 INT C REC ADV SO, P313
[4]  
BASTERRETXEA K, 1999, P IMACS IEEE CSCC 99
[5]   IMPLEMENTATION ISSUES OF SIGMOID FUNCTION AND ITS DERIVATIVE FOR VLSI DIGITAL NEURAL NETWORKS [J].
MURTAGH, P ;
TSOI, AC .
IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES, 1992, 139 (03) :207-214
[6]   EFFICIENT IMPLEMENTATION OF PIECEWISE LINEAR ACTIVATION FUNCTION FOR DIGITAL VLSI NEURAL NETWORKS [J].
MYERS, DJ ;
HUTCHINSON, RA .
ELECTRONICS LETTERS, 1989, 25 (24) :1662-1663
[7]   Implementation issues of neuro-fuzzy hardware: Going toward HW/SW codesign [J].
Reyneri, LM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (01) :176-194
[8]   IMPLEMENTING NONLINEAR ACTIVATION FUNCTIONS IN NEURAL NETWORK EMULATORS [J].
SAMMUT, KM ;
JONES, SR .
ELECTRONICS LETTERS, 1991, 27 (12) :1037-1038
[9]   Optimised PWL recursive approximation and its application to neuro-fuzzy systems [J].
Tarela, JM ;
Basterretxea, K ;
del Campo, I ;
Martínez, MV ;
Alonso, E .
MATHEMATICAL AND COMPUTER MODELLING, 2002, 35 (7-8) :867-883
[10]   Sigmoid generators for neural computing using piecewise approximations [J].
Zhang, M ;
Vassiliadis, S ;
DelgadoFrias, JG .
IEEE TRANSACTIONS ON COMPUTERS, 1996, 45 (09) :1045-1049