Novel Radiation-Induced Properties of Graphene and Related Materials

被引:68
作者
Kumar, Prashant [1 ,2 ]
Das, Barun [1 ,2 ,3 ]
Chitara, Basant [4 ]
Subrahmanyam, K. S. [1 ,2 ]
Gopalakrishnan, K. [1 ,2 ]
Krupanidhi, S. B. [4 ]
Rao, C. N. R. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, New Chem Unit, Chem & Phys Mat Unit, Int Ctr Mat Sci, Bangalore 560064, Karnataka, India
[2] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, CSIR Ctr Excellence Chem, Bangalore 560064, Karnataka, India
[3] Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India
[4] Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India
[5] King Fahd Univ Petr & Minerals, Dhahran 31261, Saudi Arabia
关键词
infrared spectroscopy; irradiation; luminescence; photochemistry; sensors; REDUCED GRAPHENE; TRANSPORT-PROPERTIES; EPITAXIAL GRAPHENE; INDUCED REDUCTION; HIGH-QUALITY; OXIDE; NANORIBBONS; ZNO; NANOLITHOGRAPHY; MODULATION;
D O I
10.1002/macp.201100451
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Interaction of graphene, graphene oxide, and related nanocarbons with radiation gives rise to many novel properties and phenomena. Irradiation of graphene oxide in solid state or in solution by sunlight, UV radiation, or excimer laser radiation reduces it to graphene with negligible oxygen functionalities on the surface. This transformation can be exploited for nanopatterning and for large scale production of reduced graphene oxide (RGO). Laser-induced dehydrogenation of hydrogenated graphene can also be used for this purpose. All such laser-induced transformations are associated with thermal effects. RGO emits blue light on UV excitation, a feature that can be used to generate white light in combination with a yellow emitter. RGO as well as graphene nanoribbons are excellent detectors of infra-red radiation while RGO is a good UV detector.
引用
收藏
页码:1146 / 1163
页数:18
相关论文
共 126 条
[1]   Photothermal Deoxygenation of Graphite Oxide with Laser Excitation in Solution and Graphene-Aided Increase in Water Temperature [J].
Abdelsayed, Victor ;
Moussa, Sherif ;
Hassan, Hassan M. ;
Aluri, Hema S. ;
Collinson, Maryanne M. ;
El-Shall, M. Samy .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (19) :2804-2809
[2]   Unusually Strong Temperature Dependence of Graphene Electron Mobility [J].
Akturk, Akin ;
Goldsman, Neil .
SISPAD: 2008 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2008, :173-176
[3]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[4]   Soft Transfer Printing of Chemically Converted Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Gomez, Lewis ;
Xu, Zheng ;
Chen, Li-Min ;
Nelson, Kurt S. ;
Zhou, Chongwu ;
Kaner, Richard B. ;
Yang, Yang .
ADVANCED MATERIALS, 2009, 21 (20) :2098-2102
[5]   Extreme UV photodetectors based on CVD single crystal diamond in a p-type/intrinsic/metal configuration [J].
Almaviva, S. ;
Marinelli, Marco ;
Milani, E. ;
Prestopino, G. ;
Tucciarone, A. ;
Verona, C. ;
Verona-Rinati, G. ;
Angelone, M. ;
Pillon, M. .
DIAMOND AND RELATED MATERIALS, 2009, 18 (01) :101-105
[6]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[7]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P655, DOI [10.1038/NNANO.2010.154, 10.1038/nnano.2010.154]
[8]   Irradiation effects in carbon nanostructures [J].
Banhart, F .
REPORTS ON PROGRESS IN PHYSICS, 1999, 62 (08) :1181-1221
[9]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[10]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)