MOCVD of ZnO thin films for potential use as compliant layers for GaN on Si

被引:20
作者
Black, Kate [1 ]
Jones, Anthony C. [1 ,3 ]
Chalker, Paul R. [2 ]
Gaskell, Jeffrey M. [1 ]
Murray, Robert T. [2 ]
Joyce, Tim B. [2 ]
Rushworth, Simon A. [3 ]
机构
[1] Univ Liverpool, Dept Chem, Liverpool L69 3ZD, Merseyside, England
[2] Univ Liverpool, Dept Mat Sci & Engn, Liverpool L69 3BX, Merseyside, England
[3] Epichem Ltd, Wirral CH62 3QF, Merseyside, England
关键词
A1. compliant layers; A1. metalorganic chemical vapour deposition; B1. gallium nitride; B1. zinc oxide;
D O I
10.1016/j.jcrysgro.2007.11.131
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
This paper explores the use of nanostructured zinc oxide (ZnO) films as a compliant buffer layer for the growth of gallium nitride (GaN) on silicon substrates. Thin films of ZnO have been deposited on silicon (111) substrates by liquid injection metalorganic chemical vapour deposition (MOCVD) using dimethyl zinc-tetrahydrofuran adduct and oxygen. The use of the adduct complex avoids prereaction between the dialkyl zinc complex and oxygen which has been observed elsewhere. ZnO films deposited by this method were stoichiometric and of high purity, with no detectable carbon contamination. Films were deposited over a temperature range 350-550 degrees C, and exhibited a nanowire-like morphology. Subsequent deposition of GaN layers grown by molecular beam epitaxy (MBE) on the ZnO film resulted in the transformation of the nanowires to gallium oxide, accompanied by virtually complete removal of zinc from the layer. A heteroepitaxially oriented (c-axis) GaN/gallium oxide/silicon structure was produced after the nitride deposition which consisted of characteristic columnar GaN with the GaN[0001]parallel to Si [111]. Selective area electron diffraction of the by-product oxide interlayer showed a polycrystalline-like behaviour that gave rise to a random azimuthal distribution of the GaN grains. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1010 / 1014
页数:5
相关论文
共 22 条
[1]  
ARONOVICH J, 1979, J VAC SCI TECHNOL, V16, P994
[2]   GROWTH OF ZNO BY MOCVD USING ALKYLZINC ALKOXIDES AS SINGLE-SOURCE PRECURSORS [J].
AULD, J ;
HOULTON, DJ ;
JONES, AC ;
RUSHWORTH, SA ;
MALIK, MA ;
OBRIEN, P ;
CRITCHLOW, GW .
JOURNAL OF MATERIALS CHEMISTRY, 1994, 4 (08) :1249-1253
[3]  
BARNES JO, 1980, J ELECTROCHEM SOC, V7, P1636
[4]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[5]   High resolution depth profiling of thin STO in high-k oxide material [J].
Ehrke, U ;
Sears, A ;
Alff, L ;
Reisinger, D .
APPLIED SURFACE SCIENCE, 2004, 231 :598-602
[6]   Epitaxial ZnO piezoelectric thin films for saw filters [J].
Emanetoglu, NW ;
Gorla, C ;
Liu, Y ;
Liang, S ;
Lu, Y .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 1999, 2 (03) :247-252
[7]   Sensor photoresponse of thin-film oxides of zinc and titanium to oxygen gas [J].
Golego, N ;
Studenikin, SA ;
Cocivera, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1592-1594
[8]   GaN epitaxy on thermally treated c-plane bulk ZnO substrates with O and Zn faces [J].
Gu, X ;
Reshchikov, MA ;
Teke, A ;
Johnstone, D ;
Morkoç, H ;
Nemeth, B ;
Nause, J .
APPLIED PHYSICS LETTERS, 2004, 84 (13) :2268-2270
[9]   Microstructure and optical properties of epitaxial GaN on ZnO (0001) grown by reactive molecular beam epitaxy [J].
Hamdani, F ;
Yeadon, M ;
Smith, DJ ;
Tang, H ;
Kim, W ;
Salvador, A ;
Botchkarev, AE ;
Gibson, JM ;
Polyakov, AY ;
Skowronski, M ;
Morkoc, H .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (02) :983-990
[10]   DC REACTIVE MAGNETRON SPUTTERED ZNO FILMS [J].
HATA, T ;
MINAMIKAWA, T ;
MORIMOTO, O ;
HADA, T .
JOURNAL OF CRYSTAL GROWTH, 1979, 47 (02) :171-176