Shape modification of III-V nanowires: The role of nucleation on sidewalls

被引:58
作者
Dubrovskii, V. G. [1 ,2 ]
Sibirev, N. V. [1 ]
Cirlin, G. E. [1 ,2 ,3 ]
Tchernycheva, M. [4 ]
Harmand, J. C. [3 ]
Ustinov, V. M. [1 ,2 ]
机构
[1] Russian Acad Sci Res & Educ, St Petersburg Phys Technol Ctr, St Petersburg 195220, Russia
[2] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[3] Alcatel Alsthom Rech, Route Nozay, CNRS, LPN, F-91460 Marcoussis, France
[4] Univ Paris 11, Inst Elect Fondamentale, Dept OptoGaN, CNRS,UMR 8622, F-91405 Orsay, France
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 03期
关键词
D O I
10.1103/PhysRevE.77.031606
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effect of sidewall nucleation on nanowire morphology is studied theoretically. The model provides a semiquantitative description of nanowire radius as a function of its length and the distance from the surface. It is demonstrated that the wire shape critically depends on the diffusion flux of adatoms from the substrate and on the rate of direct impingement to the sidewalls. At high diffusion flux the wire shape is cylindrical. A decrease of diffusion from the surface leads to the onset of nucleation on the sidewalls resulting in the lateral extension and in the reduction of wire length. The wire shape changes from cylindrical to conical, because the supersaturation of adatoms driving the nucleation is higher at the wire foot than at the top. It is shown that the shape modification becomes pronounced at low growth temperatures. Theoretical results are used to model the experimentally observed shapes of GaAs and GaP wires, grown by Au-assisted molecular beam epitaxy at different temperatures.
引用
收藏
页数:7
相关论文
共 28 条
[1]   One-dimensional heterostructures in semiconductor nanowhiskers [J].
Björk, MT ;
Ohlsson, BJ ;
Sass, T ;
Persson, AI ;
Thelander, C ;
Magnusson, MH ;
Deppert, K ;
Wallenberg, LR ;
Samuelson, L .
APPLIED PHYSICS LETTERS, 2002, 80 (06) :1058-1060
[2]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[3]   Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111) [J].
Debnath, R. K. ;
Meijers, R. ;
Richter, T. ;
Stoica, T. ;
Calarco, R. ;
Lueth, H. .
APPLIED PHYSICS LETTERS, 2007, 90 (12)
[4]   Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires [J].
Dick, KA ;
Deppert, K ;
Mårtensson, T ;
Mandl, B ;
Samuelson, L ;
Seifert, W .
NANO LETTERS, 2005, 5 (04) :761-764
[5]   Diffusion-controlled growth of semiconductor nanowires: Vapor pressure versus high vacuum deposition [J].
Dubrovskii, V. G. ;
Sibirev, N. V. ;
Suris, R. A. ;
Cirlin, G. E. ;
Harmand, J. C. ;
Ustinov, V. M. .
SURFACE SCIENCE, 2007, 601 (18) :4395-4401
[6]   General form of the dependences of nanowire growth rate on the nanowire radius [J].
Dubrovskii, V. G. ;
Sibirev, N. V. .
JOURNAL OF CRYSTAL GROWTH, 2007, 304 (02) :504-513
[7]   Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment [J].
Dubrovskii, VG ;
Cirlin, GE ;
Soshnikov, IP ;
Tonkikh, AA ;
Sibirev, NV ;
Samsonenko, YB ;
Ustinov, VM .
PHYSICAL REVIEW B, 2005, 71 (20)
[8]   On the non-monotonic lateral size dependence of the height of GaAs nanowhiskers grown by molecular beam epitaxy at high temperature [J].
Dubrovskii, VG ;
Soshnikov, IP ;
Cirlin, GE ;
Tonkikh, AA ;
Samsonenko, YB ;
Sibirev, NV ;
Ustinov, VM .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (07) :R30-R33
[9]   Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy [J].
Dubrovskii, VG ;
Sibirev, NV ;
Cirlin, GE ;
Harmand, JC ;
Ustinov, VM .
PHYSICAL REVIEW E, 2006, 73 (02)
[10]  
Dubrovskii VG, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.031604