Functionalized Multilayered Graphene Platform for Urea Sensor

被引:146
作者
Srivastava, Rajesh K. [1 ,2 ]
Srivastava, Saurabh [1 ,3 ,4 ]
Narayanan, Tharangattu N. [2 ]
Mahlotra, Bansi D. [3 ,4 ,5 ,6 ]
Vajtai, Robert [2 ]
Ajayan, Pulickel M. [2 ]
Srivastava, Anchal [1 ]
机构
[1] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India
[2] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
[3] Natl Phys Lab, Biomed Instrumentat Sect, Dept Sci, New Delhi 110012, India
[4] Natl Phys Lab, Biomed Instrumentat Sect, Technol Ctr Biomol Elect, New Delhi 110012, India
[5] Chungnam Natl Univ, Ctr NanoBioengn & Spin Tron, Taejon 305764, South Korea
[6] Delhi Technol Univ, Dept Biotechnol, Delhi 11042, India
关键词
MWCNTs; graphene; biosensor; electron microscopy; X-ray photoelectron spectroscopy; CARBON NANOTUBE FILTERS; RAMAN-SPECTROSCOPY; FILMS; BIOSENSOR; GRAPHITE; SINGLE; SHEETS; OXIDE; ELECTROCHEMISTRY; NANORIBBONS;
D O I
10.1021/nn203210s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multilayered graphene (MLG) Is an interesting material for electrochemical sensing and biosensing because of its very large 2D electrical conductivity and large surface area. We propose a less toxic, reproducible, and easy method for producing functionalized multilayer graphene from multiwalled carbon nanotubes (MWCNTs) in mass scale using only concentrated H2SO4/HNO3. Electron microscopy results show the MLG formation, whereas FTIR and XPS data suggest its carboxylic and hydroxyl-functionalized nature. We utilize this functionalized MLG for the fabrication of a novel amperometric urea biosensor. This biosensor shows linearity of 10-100 mg dL(-1), sensitivity of 5.43 mu A mg(-1) dL cm(-2), lower detection limit of 3.9 mg dL(-1), and response time of 10 s. Our results suggest that MLG Is a promising material for electrochemical biosensing applications.
引用
收藏
页码:168 / 175
页数:8
相关论文
共 55 条
[1]   Potentiometric urea biosensor based on multi-walled carbon nanotubes (MWCNTs)/silica composite material [J].
Ahuja, Tarushee ;
Kumar, D. ;
Singh, Nahar ;
Biradar, A. M. ;
Rajesh .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2011, 31 (02) :90-94
[2]   Stacked graphene nanofibers for electrochemical oxidation of DNA bases [J].
Ambrosi, Adriano ;
Pumera, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (31) :8944-8948
[3]   Platelet Graphite Nanofibers for Electrochemical Sensing and Biosensing: The Influence of Graphene Sheet Orientation [J].
Ambrosi, Adriano ;
Sasaki, Toshio ;
Pumera, Martin .
CHEMISTRY-AN ASIAN JOURNAL, 2010, 5 (02) :266-271
[4]   Recent advances in self-assembled monolayers based biomolecular electronic devices [J].
Arya, Sunil K. ;
Solanki, Pratima R. ;
Datta, Monika ;
Malhotra, Bansi D. .
BIOSENSORS & BIOELECTRONICS, 2009, 24 (09) :2810-2817
[5]   Synthesis of carbon nanotubes [J].
Awasthi, K ;
Srivastava, A ;
Srivastava, ON .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2005, 5 (10) :1616-1636
[6]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[7]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[8]   Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes [J].
Cano-Marquez, Abraham G. ;
Rodriguez-Macias, Fernando J. ;
Campos-Delgado, Jessica ;
Espinosa-Gonzalez, Claudia G. ;
Tristan-Lopez, Ferdinando ;
Ramirez-Gonzalez, Daniel ;
Cullen, David A. ;
Smith, David J. ;
Terrones, Mauricio ;
Vega-Cantu, Yadira I. .
NANO LETTERS, 2009, 9 (04) :1527-1533
[9]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[10]  
Choucair M, 2009, NAT NANOTECHNOL, V4, P30, DOI [10.1038/nnano.2008.365, 10.1038/NNANO.2008.365]