A graphene nanoribbon network and its biosensing application

被引:76
作者
Dong, Xiaochen [1 ,2 ]
Long, Qing [1 ,2 ]
Wang, Jing [3 ]
Chan-Park, M. B. [3 ]
Huang, Yinxi [3 ]
Huang, Wei [1 ,2 ]
Chen, Peng [3 ]
机构
[1] NUPT, KLOEID, Nanjing 210046, Peoples R China
[2] NUPT, Inst Adv Mat, Nanjing 210046, Peoples R China
[3] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637457, Singapore
基金
新加坡国家研究基金会;
关键词
CARBON NANOTUBES; OXIDE; FILMS; TEMPERATURE; FABRICATION; REDUCTION; GROWTH;
D O I
10.1039/c1nr11006c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene oxide nanoribbons (GONRs) have been prepared by chemically unzipping multiwalled carbon nanotubes (MWCNTs). Thin-film networks of GONRs were fabricated by spray-coating, followed by a chemical or thermal reduction to form reduced graphene oxide nanoribbons (rGONRs). Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) characterizations indicate that the thermal reduction in the presence of ethanol vapor effectively restores the graphitic structure of the GONR as compared to chemical reduction with hydrazine vapor. Electrical measurements under a liquid-gate configuration demonstrates that rGONR network field-effect transistors exhibit much higher on/off ratios than a network of microsized reduced graphene oxides (rGOs) or a continuous film of single-layered pristine or chemical vapor deposited (CVD) graphene. Furthermore, we demonstrated the potential applications of rGONR networks for biosensing, specifically, the real-time and sensitive detection of adenosine triphosphate (ATP) molecules.
引用
收藏
页码:5156 / 5160
页数:5
相关论文
共 49 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P655, DOI [10.1038/NNANO.2010.154, 10.1038/nnano.2010.154]
[3]   Rational Fabrication of Graphene Nanoribbons Using a Nanowire Etch Mask [J].
Bai, Jingwei ;
Duan, Xiangfeng ;
Huang, Yu .
NANO LETTERS, 2009, 9 (05) :2083-2087
[4]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[5]   Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes [J].
Cataldo, Franco ;
Compagnini, Giuseppe ;
Patane, Giacomo ;
Ursini, Ornella ;
Angelini, Giancarlo ;
Ribic, Primoz Rebernik ;
Margaritondo, Giorgio ;
Cricenti, Antonio ;
Palleschi, Giuseppe ;
Valentini, Federica .
CARBON, 2010, 48 (09) :2596-2602
[6]   Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities [J].
Chen, Jun Song ;
Wang, Zhiyu ;
Dong, Xiao Chen ;
Chen, Peng ;
Lou, Xiong Wen .
NANOSCALE, 2011, 3 (05) :2158-2161
[7]   Microwave-assisted synthesis of highly water-soluble graphene towards electrical DNA sensor [J].
Choi, Bong Gill ;
Park, HoSeok ;
Yang, Min Ho ;
Jung, Young Mee ;
Lee, Sang Yup ;
Hong, Won Hi ;
Park, Tae Jung .
NANOSCALE, 2010, 2 (12) :2692-2697
[8]   The formation of a carbon nanotube-graphene oxide core-shell structure and its possible applications [J].
Dong, Xiaochen ;
Xing, Guichuan ;
Chan-Park, M. B. ;
Shi, Wenhui ;
Xiao, Ni ;
Wang, Jing ;
Yan, Qingyu ;
Sum, Tze Chien ;
Huang, Wei ;
Chen, Peng .
CARBON, 2011, 49 (15) :5071-5078
[9]   Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure [J].
Dong, Xiaochen ;
Wang, Peng ;
Fang, Wenjing ;
Su, Ching-Yuan ;
Chen, Yu-Hsin ;
Li, Lain-Jong ;
Huang, Wei ;
Chen, Peng .
CARBON, 2011, 49 (11) :3672-3678
[10]   In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing [J].
Dong, Xiaochen ;
Huang, Wei ;
Chen, Peng .
NANOSCALE RESEARCH LETTERS, 2011, 6 :1-6