Different levels of alternative splicing among eukaryotes

被引:364
作者
Kim, Eddo [1 ]
Magen, Alon [1 ]
Ast, Gil [1 ]
机构
[1] Tel Aviv Univ, Sackler Fac Med, Dept Human Genet & Mol Med, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
D O I
10.1093/nar/gkl924
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Alternative splicing increases transcriptome and proteome diversification. Previous analyses aiming at comparing the rate of alternative splicing between different organisms provided contradicting results. These contradicting results were attributed to the fact that both analyses were dependent on the expressed sequence tag (EST) coverage, which varies greatly between the tested organisms. In this study we compare the level of alternative splicing among eight different organisms. By employing an EST independent approach we reveal that the percentage of genes and exons undergoing alternative splicing is higher in vertebrates compared with invertebrates. We also find that alternative exons of the skipping type are flanked by longer introns compared to constitutive ones, whereas alternative 5' and 3' splice sites events are generally not. In addition, although the regulation of alternative splicing and sizes of introns and exons have changed during metazoan evolution, intron retention remained the rarest type of alternative splicing, whereas exon skipping is more prevalent and exhibits a slight increase, from invertebrates to vertebrates. The difference in the level of alternative splicing suggests that alternative splicing may contribute greatly to the mammal higher level of phenotypic complexity, and that accumulation of introns confers an evolutionary advantage as it allows increasing the number of alternative splicing forms.
引用
收藏
页码:125 / 131
页数:7
相关论文
共 32 条
[1]   Polyploidy and genome evolution in plants [J].
Adams, KL ;
Wendel, JF .
CURRENT OPINION IN PLANT BIOLOGY, 2005, 8 (02) :135-141
[2]   Molecular phylogeny and divergence time estimates for major rodent groups: Evidence from multiple genes [J].
Adkins, RM ;
Gelke, EL ;
Rowe, D ;
Honeycutt, RL .
MOLECULAR BIOLOGY AND EVOLUTION, 2001, 18 (05) :777-791
[3]   How did alternative splicing evolve? [J].
Ast, G .
NATURE REVIEWS GENETICS, 2004, 5 (10) :773-782
[4]   Alternative splicing and genome complexity [J].
Brett, D ;
Pospisil, H ;
Valcárcel, J ;
Reich, J ;
Bork, P .
NATURE GENETICS, 2002, 30 (01) :29-30
[5]   Genome sequence of the nematode C-elegans:: A platform for investigating biology [J].
不详 .
SCIENCE, 1998, 282 (5396) :2012-2018
[6]   A computer program for aligning a cDNA sequence with a genomic DNA sequence [J].
Florea, L ;
Hartzell, G ;
Zhang, Z ;
Rubin, GM ;
Miller, W .
GENOME RESEARCH, 1998, 8 (09) :967-974
[7]   The architecture of pre-mRNAs affects mechanisms of splice-site pairing [J].
Fox-Walsh, KL ;
Dou, YM ;
Lam, BJ ;
Hung, SP ;
Baldi, PF ;
Hertel, KJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (45) :16176-16181
[8]  
Gerhard DS, 2004, GENOME RES, V14, P2121, DOI 10.1101/gr.2596504
[9]   Alternative splicing: increasing diversity in the proteomic world [J].
Graveley, BR .
TRENDS IN GENETICS, 2001, 17 (02) :100-107
[10]   Estimating rates of alternative splicing in mammals and invertebrates - Reply [J].
Harrington, ED ;
Boue, S ;
Valcarcel, J ;
Reich, JG ;
Bork, P .
NATURE GENETICS, 2004, 36 (09) :916-917