Gas storage in porous metal-organic frameworks for clean energy applications

被引:1224
作者
Ma, Shengqian [1 ]
Zhou, Hong-Cai [2 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[2] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA
基金
美国国家科学基金会;
关键词
PRESSURE METHANE ADSORPTION; HYDROGEN STORAGE; H-2; ADSORPTION; CARBON-DIOXIDE; COORDINATION-FRAMEWORK; HIGH-CAPACITY; PORE-SIZE; SITES; SORPTION; DESIGN;
D O I
10.1039/b916295j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Depletion of fossil oil deposits and the escalating threat of global warming have put clean energy research, which includes the search for clean energy carriers such as hydrogen and methane as well as the reduction of carbon dioxide emissions, on the urgent agenda. A significant technical challenge has been recognized as the development of a viable method to efficiently trap hydrogen, methane and carbon dioxide gas molecules in a confined space for various applications. This issue can be addressed by employing highly porous materials as storage media, and porous metal-organic frameworks (MOFs) which have exceptionally high surface areas as well as chemically-tunable structures are playing an unusual role in this respect. In this feature article we provide an overview of the current status of clean energy applications of porous MOFs, including hydrogen storage, methane storage and carbon dioxide capture.
引用
收藏
页码:44 / 53
页数:10
相关论文
共 112 条
[1]   Luminescent metal-organic frameworks [J].
Allendorf, M. D. ;
Bauer, C. A. ;
Bhakta, R. K. ;
Houk, R. J. T. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) :1330-1352
[2]   Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification [J].
Bae, Youn-Sang ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Snurr, Randall Q. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (15) :2131-2134
[3]   Optimum conditions for adsorptive storage [J].
Bhatia, SK ;
Myers, AL .
LANGMUIR, 2006, 22 (04) :1688-1700
[4]   Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47 [J].
Bourrelly, S ;
Llewellyn, PL ;
Serre, C ;
Millange, F ;
Loiseau, T ;
Férey, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (39) :13519-13521
[5]  
Burchell T., 2000, SAE TECH PAP SER, P2000
[6]   A route to high surface area, porosity and inclusion of large molecules in crystals [J].
Chae, HK ;
Siberio-Pérez, DY ;
Kim, J ;
Go, Y ;
Eddaoudi, M ;
Matzger, AJ ;
O'Keeffe, M ;
Yaghi, OM .
NATURE, 2004, 427 (6974) :523-527
[7]   Hydrogen adsorption in an interpenetrated dynamic metal-organic framework [J].
Chen, Banglin ;
Ma, Shengqian ;
Zapata, Fatima ;
Lobkovsky, Emil B. ;
Yang, Jun .
INORGANIC CHEMISTRY, 2006, 45 (15) :5718-5720
[8]   Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate) [J].
Choi, Hye Jin ;
Dinca, Mircea ;
Long, Jeffrey R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (25) :7848-+
[9]  
Collins D.J., 2009, METAL ORGANIC FRAMEW
[10]   Hydrogen storage in metal-organic frameworks [J].
Collins, David J. ;
Zhou, Hong-Cai .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (30) :3154-3160