Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria

被引:117
作者
Johansson, Catrine [1 ]
Kavanagh, Kathryn L. [1 ]
Gileadi, Opher [1 ]
Oppermann, Udo [1 ]
机构
[1] Univ Oxford, Botnar Res Ctr, Struct Genom Consortium, Oxford OX3 7LD, England
基金
英国惠康基金;
关键词
D O I
10.1074/jbc.M608179200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human mitochondrial glutaredoxin 2 (GLRX2), which controls intracellular redox balance and apoptosis, exists in a dynamic equilibrium of enzymatically active monomers and quiescent dimers. Crystal structures of both monomeric and dimeric forms of human GLRX2 reveal a distinct glutathione binding mode and show a 2Fe-2S-bridged dimer. The iron-sulfur cluster is coordinated through the N-terminal active site cysteine, Cys-37, and reduced glutathione. The structures indicate that the enzyme can be inhibited by a high GSH/GSSG ratio either by forming a 2Fe-2S-bridged dimer that locks away the N-terminal active site cysteine or by binding non-covalently and blocking the active site as seen in the monomer. The properties that permit GLRX2, and not other glutaredoxins, to form an iron-sulfur-containing dimer are likely due to the proline-to-serine substitution in the active site motif, allowing the main chain more flexibility in this area and providing polar interaction with the stabilizing glutathione. This appears to be a novel use of an iron-sulfur cluster in which binding of the cluster inactivates the protein by sequestering active site residues and where loss of the cluster through changes in subcellular redox status creates a catalytically active protein. Under oxidizing conditions, the dimers would readily separate into iron-free active monomers, providing a structural explanation for glutaredoxin activation under oxidative stress.
引用
收藏
页码:3077 / 3082
页数:6
相关论文
共 31 条
[21]   Glutaredoxins catalyze the reduction of glutathione by dihydrolipoamide with high efficiency [J].
Porras, P ;
Pedrajas, JR ;
Martínez-Galisteo, E ;
Padilla, CA ;
Johansson, C ;
Holmgren, A ;
Bárcena, JA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 295 (05) :1046-1051
[22]  
Rodríguez-Manzaneque MT, 1999, MOL CELL BIOL, V19, P8180
[23]   Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes [J].
Rodríguez-Manzaneque, MT ;
Tamarit, J ;
Bellí, G ;
Ros, J ;
Herrero, E .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (04) :1109-1121
[24]   Mitochondria Damage Checkpoint, Aging, and Cancer [J].
Singh, Keshav K. .
UNDERSTANDING AND MODULATING AGING, 2006, 1067 :182-190
[25]  
SODANO P, 1991, J MOL BIOL, V221, P1311
[26]   Likelihood-enhanced fast rotation functions [J].
Storoni, LC ;
McCoy, AJ ;
Read, RJ .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :432-438
[27]  
Storz P., 2006, SCI STKE, V2006, pre3, DOI DOI 10.1126/STKE.3322006RE3
[28]   Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin [J].
Tamarit, J ;
Bellí, G ;
Cabiscol, E ;
Herrero, E ;
Ros, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (28) :25745-25751
[29]   Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis [J].
Wingert, RA ;
Galloway, JL ;
Barut, B ;
Foott, H ;
Fraenkel, P ;
Axe, JL ;
Weber, GJ ;
Dooley, K ;
Davidson, AJ ;
Schmidt, B ;
Paw, BH ;
Shaw, GC ;
Kingsley, P ;
Palis, J ;
Schubert, H ;
Chen, O ;
Kaplan, J ;
Zon, LI .
NATURE, 2005, 436 (7053) :1035-1039
[30]   Reactivity of the human thioltransferase (Glutaredoxin) C7S, C25S, C78S, C82S mutant and NMR solution structure of its glutathionyl mixed disulfide intermediate reflect catalytic specificity [J].
Yang, YW ;
Jao, SC ;
Nanduri, S ;
Starke, DW ;
Mieyal, JJ ;
Qin, J .
BIOCHEMISTRY, 1998, 37 (49) :17145-17156