Electronic spin transport in graphene field-effect transistors

被引:164
作者
Popinciuc, M. [1 ]
Jozsa, C. [1 ]
Zomer, P. J. [1 ]
Tombros, N. [1 ]
Veligura, A. [1 ]
Jonkman, H. T. [1 ]
van Wees, B. J. [1 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, Groningen, Netherlands
关键词
carrier mobility; field effect transistors; graphene; spin dynamics; spin valves; spin-orbit interactions; ELECTRICAL DETECTION; PRECESSION; METAL; INJECTION;
D O I
10.1103/PhysRevB.80.214427
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Spin transport experiments in graphene, a single layer of carbon atoms ordered in a honeycomb lattice, indicate spin-relaxation times that are significantly shorter than the theoretical predictions. We investigate experimentally whether these short spin-relaxation times are due to extrinsic factors, such as spin relaxation caused by low impedance contacts, enhanced spin-flip processes at the device edges, or the presence of an aluminum oxide layer on top of graphene in some samples. Lateral spin valve devices using a field-effect transistor geometry allowed for the investigation of the spin relaxation as a function of the charge density, going continuously from metallic hole to electron conduction (charge densities of n similar to 10(12) cm(-2)) via the Dirac charge neutrality point (n similar to 0). The results are quantitatively described by a one-dimensional spin-diffusion model where the spin relaxation via the contacts is taken into account. Spin valve experiments for various injector-detector separations and spin precession experiments reveal that the longitudinal (T-1) and the transversal (T-2) relaxation times are similar. The anisotropy of the spin-relaxation times tau and tau(perpendicular to), when the spins are injected parallel or perpendicular to the graphene plane, indicates that the effective spin-orbit fields do not lie exclusively in the two-dimensional graphene plane. Furthermore, the proportionality between the spin-relaxation time and the momentum-relaxation time indicates that the spin-relaxation mechanism is of the Elliott-Yafet type. For carrier mobilities of 2x10(3)-5x10(3) cm(2)/V s and for graphene flakes of 0.1-2 mu m in width, we found spin-relaxation times on the order of 50-200 ps, times which appear not to be determined by the extrinsic factors mentioned above.
引用
收藏
页数:13
相关论文
共 44 条
[1]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[2]   Impurity-Induced Spin-Orbit Coupling in Graphene [J].
Castro Neto, A. H. ;
Guinea, F. .
PHYSICAL REVIEW LETTERS, 2009, 103 (02)
[3]   Gate-tunable graphene spin valve [J].
Cho, Sungjae ;
Chen, Yung-Fu ;
Fuhrer, Michael S. .
APPLIED PHYSICS LETTERS, 2007, 91 (12)
[4]  
DYAKONOV MI, 1986, SOV PHYS SEMICOND+, V20, P110
[5]   THEORY OF THE EFFECT OF SPIN-ORBIT COUPLING ON MAGNETIC RESONANCE IN SOME SEMICONDUCTORS [J].
ELLIOTT, RJ .
PHYSICAL REVIEW, 1954, 96 (02) :266-279
[6]   Electron spin relaxation in graphene: The role of the substrate [J].
Ertler, Christian ;
Konschuh, Sergej ;
Gmitra, Martin ;
Fabian, Jaroslav .
PHYSICAL REVIEW B, 2009, 80 (04)
[7]  
Fabian J, 2007, ACTA PHYS SLOVACA, V57, P565, DOI 10.2478/v10155-010-0086-8
[8]   Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor -: art. no. 184420 [J].
Fert, A ;
Jaffrès, H .
PHYSICAL REVIEW B, 2001, 64 (18)
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]  
GMITRA M, ARXIV09043315