Role of nonlinear effects in nanowire growth and crystal phase

被引:87
作者
Dubrovskii, V. G. [1 ,2 ]
Sibirev, N. V. [1 ]
Cirlin, G. E. [1 ,2 ,3 ]
Bouravleuv, A. D. [1 ,2 ]
Samsonenko, Yu. B. [1 ,2 ]
Dheeraj, D. L. [4 ]
Zhou, H. L. [4 ]
Sartel, C. [3 ]
Harmand, J. C. [3 ]
Patriarche, G. [3 ]
Glas, F. [3 ]
机构
[1] Russian Acad Sci, St Petersburg Phys & Technol Ctr Res & Educ, St Petersburg 195220, Russia
[2] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[3] CNRS, LPN, F-91460 Marcoussis, France
[4] Norwegian Univ Sci & Technol, Dept Elect & Telecommun, NO-7491 Trondheim, Norway
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 20期
关键词
MOLECULAR-BEAM EPITAXY; LIQUID-SOLID MECHANISM; SEMICONDUCTOR NANOWIRES; DIFFUSION MECHANISM; SURFACE-DIFFUSION; GAAS; NANOWHISKERS; POLYTYPISM; WHISKERS; ADATOMS;
D O I
10.1103/PhysRevB.80.205305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study theoretically and experimentally nonlinear effects during the "vapor-liquid-solid" growth of semiconductor nanowires. Nonlinear growth equation considered contains kinetic coefficients from the surface and sidewall diffusion which can be of either signs. We predict four possible growth scenarios: (I) infinite growth; (II) decomposition; (III) averaging growth to a finite length; and (IV) continuing growth such that nanowires of small initial length decay and longer nanowires grow infinitely. We present the experimental evidence of nontrivial scenarios (II) and (IV) during the Au-assisted molecular-beam epitaxy of GaAs nanowires. Scenario (II) corresponds to the evaporation of GaAs nanowires during the annealing. Scenario (IV) is observed during two-step growth procedure where a low-temperature growth is followed by deposition at 630 degrees C. We show that the growth via scenario (IV) enables to control the crystal phase and to obtain the stacking-fault-free sections of zinc-blende GaAs NWs having only 15-20 nm in radius.
引用
收藏
页数:8
相关论文
共 44 条
[21]   Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires [J].
Glas, Frank .
PHYSICAL REVIEW B, 2006, 74 (12)
[22]   Step-flow growth of a nanowire in the vapor-liquid-solid and vapor-solid-solid processes [J].
Golovin, A. A. ;
Davis, S. H. ;
Voorhees, P. W. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (07)
[23]   GaN nanowire lasers with low lasing thresholds [J].
Gradecak, S ;
Qian, F ;
Li, Y ;
Park, HG ;
Lieber, CM .
APPLIED PHYSICS LETTERS, 2005, 87 (17) :1-3
[24]   GaAs nanowires formed by Au-assisted molecular beam epitaxy: Effect of growth temperature [J].
Harmand, J. C. ;
Tchernycheva, M. ;
Patriarche, G. ;
Travers, L. ;
Glas, F. ;
Cirlin, G. .
JOURNAL OF CRYSTAL GROWTH, 2007, 301 :853-856
[25]   Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth -: art. no. 203101 [J].
Harmand, JC ;
Patriarche, G ;
Péré-Laperne, N ;
Mérat-Combes, MN ;
Travers, L ;
Glas, F .
APPLIED PHYSICS LETTERS, 2005, 87 (20) :1-3
[26]   Mass transport model for semiconductor nanowire growth [J].
Johansson, J ;
Svensson, CPT ;
Mårtensson, T ;
Samuelson, L ;
Seifert, W .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (28) :13567-13571
[27]   Effects of Supersaturation on the Crystal Structure of Gold Seeded III-V Nanowires [J].
Johansson, Jonas ;
Karlsson, Lisa S. ;
Dick, Kimberly A. ;
Bolinsson, Jessica ;
Wacaser, Brent A. ;
Deppert, Knut ;
Samuelson, Lars .
CRYSTAL GROWTH & DESIGN, 2009, 9 (02) :766-773
[28]   Influence of growth mode on the structural, optical, and electrical properties of In-doped ZnO nanorods [J].
Jung, M. N. ;
Koo, J. E. ;
Oh, S. J. ;
Lee, B. W. ;
Lee, W. J. ;
Ha, S. H. ;
Cho, Y. R. ;
Chang, J. H. .
APPLIED PHYSICS LETTERS, 2009, 94 (04)
[29]   Dependence of the growth rate of nanowires on the nanowire diameter [J].
Kashchiev, D .
CRYSTAL GROWTH & DESIGN, 2006, 6 (05) :1154-1156
[30]   SURFACE-DIFFUSION LENGTH OF GA ADATOMS IN MOLECULAR-BEAM EPITAXY ON GAAS(100)-(110) FACET STRUCTURES [J].
LOPEZ, M ;
NOMURA, Y .
JOURNAL OF CRYSTAL GROWTH, 1995, 150 (1-4) :68-72