Percolation thresholds on two-dimensional Voronoi networks and Delaunay triangulations

被引:44
作者
Becker, Adam M. [1 ]
Ziff, Robert M. [2 ,3 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
computational geometry; mesh generation; Monte Carlo methods; percolation; random processes; SITE PERCOLATION; CRITICAL PROBABILITY; BOND; TESSELLATIONS; ALGORITHMS; LATTICES; MODEL; SIZE;
D O I
10.1103/PhysRevE.80.041101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The site percolation threshold for the random Voronoi network is determined numerically, with the result p(c)=0.714 10 +/- 0.000 02, using Monte Carlo simulation on periodic systems of up to 40 000 sites. The result is very close to the recent theoretical estimate p(c)approximate to 0.7151 of Neher For the bond threshold on the Voronoi network, we find p(c)=0.666 931 +/- 0.000 005 implying that, for its dual, the Delaunay triangulation p(c)=0.333 069 +/- 0.000 005. These results rule out the conjecture by Hsu and Huang that the bond thresholds are 2/3 and 1/3, respectively, but support the conjecture of Wierman that, for fully triangulated lattices other than the regular triangular lattice, the bond threshold is less than 2 sin pi/18 approximate to 0.3473.
引用
收藏
页数:9
相关论文
共 70 条
[1]   Competitive facility location: the Voronoi game [J].
Ahn, HK ;
Cheng, SW ;
Cheong, O ;
Golin, M ;
van Oostrum, R .
THEORETICAL COMPUTER SCIENCE, 2004, 310 (1-3) :457-467
[2]   SHARPNESS OF THE PHASE-TRANSITION IN PERCOLATION MODELS [J].
AIZENMAN, M ;
BARSKY, DJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (03) :489-526
[3]  
[Anonymous], 2000, Spatial tessellations: concepts and applications of Voronoi diagrams
[4]  
AURENHAMMER F, 1991, COMPUT SURV, V23, P345, DOI 10.1145/116873.116880
[5]   Scaling corrections:: site percolation and Ising model in three dimensions [J].
Ballesteros, HG ;
Fernández, LA ;
Martín-Mayor, V ;
Sudupe, AM ;
Parisi, G ;
Ruiz-Lorenzo, JJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (01) :1-13
[6]  
BANDYOPADHYAY S, 2003, 22 ANN JOINT C IEEE, P3
[7]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[8]   OPTIMAL EXPECTED-TIME ALGORITHMS FOR CLOSEST POINT PROBLEMS [J].
BENTLEY, JL ;
WEIDE, BW ;
YAO, AC .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1980, 6 (04) :563-580
[9]   Percolation on dual lattices with k-fold symmetry [J].
Bollobas, Bela ;
Riordan, Oliver .
RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (04) :463-472
[10]   Percolation on random Johnson-Mehl tessellations and related models [J].
Bollobas, Bela ;
Riordan, Oliver .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (3-4) :319-343