Wright functions as scale-invariant solutions of the diffusion-wave equation

被引:194
作者
Gorenflo, R
Luchko, Y [1 ]
Mainardi, F
机构
[1] Free Univ Berlin, Dept Math & Comp Sci, D-14195 Berlin, Germany
[2] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy
[3] Ist Nazl Fis Nucl, Sezione Bologna, I-40126 Bologna, Italy
关键词
Wright functions; scale-invariant solutions; diffusion-wave equation; Erdelyi-Kober operators;
D O I
10.1016/S0377-0427(00)00288-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The time-fractional diffusion-wave equation is obtained from the classical diffusion or wave equation by replacing the first- or second-order time derivative by a fractional derivative of order alpha (0 < alpha less than or equal to 2). Using the similarity method and the method of the Laplace transform, it is shown that the scale-invariant solutions of the mixed problem of signalling type for the time-fractional diffusion-wave equation are given in terms of the Wright function in the case 0 < alpha < 1 and in terms of the generalized Wright function in the case 1 < or < 2. The reduced equation for the scale-invariant solutions is given in terms of the Caputo-type modification of the Erdelyi-Kober fractional differential operator. (C) 2000 Elsevier Science B.V. All rights reserved. MSC. 26A33; 33B20; 45J05; 45K05.
引用
收藏
页码:175 / 191
页数:17
相关论文
共 44 条
  • [11] GAJIC L, 1976, NOUVELLE SER, V20, P91
  • [12] A THEORY OF TRANSPORT PHENOMENA IN DISORDERED-SYSTEMS
    GIONA, M
    ROMAN, HE
    [J]. CHEMICAL ENGINEERING JOURNAL AND THE BIOCHEMICAL ENGINEERING JOURNAL, 1992, 49 (01): : 1 - 10
  • [13] Gorenflo R, 1998, PROCEEDINGS OF THE EIGHTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, P195
  • [14] Gorenflo R., 1997, Fractional Calculus: Integral and Differential Equations of Fractional Order, DOI DOI 10.1007/978-3-7091-2664-6_5
  • [15] Gorenflo R., 1998, Fractional Mech, V50, P377
  • [16] EXACT-SOLUTIONS FOR A CLASS OF FRACTAL TIME RANDOM-WALKS
    HILFER, R
    [J]. FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (01): : 211 - 216
  • [17] Kiryakova V., 1994, Generalized Fractional Calculus and Applications, VVolume 301
  • [18] Luchko F., 1999, FRACTIONAL CALCULUS, V2, P383
  • [19] Luchko Y., 1998, Fract. Calc. Appl. Anal, V1, P63
  • [20] LUCHKO Y, 1998, A0898 FREIE U BERL