Electronic properties of graphene antidot lattices

被引:150
作者
Furst, J. A. [1 ]
Pedersen, J. G. [2 ]
Flindt, C. [3 ]
Mortensen, N. A. [2 ]
Brandbyge, M. [1 ]
Pedersen, T. G. [4 ]
Jauho, A-P [1 ,5 ]
机构
[1] Tech Univ Denmark, Dept Micro & Nanotechnol, DTU Nanotech, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Dept Photon Engn, DTU Foton, DK-2800 Lyngby, Denmark
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Aalborg Univ, Dept Phys & Nanotechnol, DK-9220 Aalborg O, Denmark
[5] Aalto Univ, Dept Appl Phys, FI-02015 Helsinki, Finland
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
关键词
MASSLESS DIRAC FERMIONS; STATES; GAS;
D O I
10.1088/1367-2630/11/9/095020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full tight-binding calculations and density functional theory (DFT) are necessary for more reliable predictions of the band structure. We compare the three computational approaches and investigate the role of hydrogen passivation within our DFT scheme.
引用
收藏
页数:17
相关论文
共 56 条
[1]   NEUTRINO BILLIARDS - TIME-REVERSAL SYMMETRY-BREAKING WITHOUT MAGNETIC-FIELDS [J].
BERRY, MV ;
MONDRAGON, RJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 412 (1842) :53-74
[2]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[3]  
Dresselhaus G., 1998, PHYS PROPERTIES CARB
[4]   MAGNETOTRANSPORT THROUGH AN ANTIDOT LATTICE IN GAAS-ALXGA1-XAS HETEROSTRUCTURES [J].
ENSSLIN, K ;
PETROFF, PM .
PHYSICAL REVIEW B, 1990, 41 (17) :12307-12310
[5]   Weak localization and transport gap in graphene antidot lattices [J].
Eroms, J. ;
Weiss, D. .
NEW JOURNAL OF PHYSICS, 2009, 11
[6]   Sub-diffraction-limited optical imaging with a silver superlens [J].
Fang, N ;
Lee, H ;
Sun, C ;
Zhang, X .
SCIENCE, 2005, 308 (5721) :534-537
[7]   Electron beam nanosculpting of suspended graphene sheets [J].
Fischbein, Michael D. ;
Drndic, Marija .
APPLIED PHYSICS LETTERS, 2008, 93 (11)
[8]   Quantum computing via defect states in two-dimensional antidot lattices [J].
Flindt, C ;
Mortensen, NA ;
Jauho, AP .
NANO LETTERS, 2005, 5 (12) :2515-2518
[9]  
FURST JA, 2009, PHYS REV B IN PRESS
[10]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534