Electronic properties of graphene antidot lattices

被引:150
作者
Furst, J. A. [1 ]
Pedersen, J. G. [2 ]
Flindt, C. [3 ]
Mortensen, N. A. [2 ]
Brandbyge, M. [1 ]
Pedersen, T. G. [4 ]
Jauho, A-P [1 ,5 ]
机构
[1] Tech Univ Denmark, Dept Micro & Nanotechnol, DTU Nanotech, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Dept Photon Engn, DTU Foton, DK-2800 Lyngby, Denmark
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Aalborg Univ, Dept Phys & Nanotechnol, DK-9220 Aalborg O, Denmark
[5] Aalto Univ, Dept Appl Phys, FI-02015 Helsinki, Finland
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
关键词
MASSLESS DIRAC FERMIONS; STATES; GAS;
D O I
10.1088/1367-2630/11/9/095020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full tight-binding calculations and density functional theory (DFT) are necessary for more reliable predictions of the band structure. We compare the three computational approaches and investigate the role of hydrogen passivation within our DFT scheme.
引用
收藏
页数:17
相关论文
共 56 条
[41]   Creation of Individual Vacancies in Carbon Nanotubes by Using an Electron Beam of 1 Å Diameter [J].
Rodriguez-Manzo, Julio A. ;
Banhart, Florian .
NANO LETTERS, 2009, 9 (06) :2285-2289
[42]   Transport properties of antidot superlattices of graphene nanoribbons [J].
Rosales, L. ;
Pacheco, M. ;
Barticevic, Z. ;
Leon, A. ;
Latge, A. ;
Orellana, P. A. .
PHYSICAL REVIEW B, 2009, 80 (07)
[43]  
Roukes M. L., 1989, B AM PHYS SOC, V34, P633
[44]   Detection of individual gas molecules adsorbed on graphene [J].
Schedin, F. ;
Geim, A. K. ;
Morozov, S. V. ;
Hill, E. W. ;
Blake, P. ;
Katsnelson, M. I. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (09) :652-655
[45]   Metamaterial electromagnetic cloak at microwave frequencies [J].
Schurig, D. ;
Mock, J. J. ;
Justice, B. J. ;
Cummer, S. A. ;
Pendry, J. B. ;
Starr, A. F. ;
Smith, D. R. .
SCIENCE, 2006, 314 (5801) :977-980
[46]   Magnetoconductance oscillations in graphene antidot arrays [J].
Shen, T. ;
Wu, Y. Q. ;
Capano, M. A. ;
Rokhinson, L. P. ;
Engel, L. W. ;
Ye, P. D. .
APPLIED PHYSICS LETTERS, 2008, 93 (12)
[47]   The SIESTA method for ab initio order-N materials simulation [J].
Soler, JM ;
Artacho, E ;
Gale, JD ;
García, A ;
Junquera, J ;
Ordejón, P ;
Sánchez-Portal, D .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (11) :2745-2779
[48]   Energy gaps in graphene nanoribbons [J].
Son, Young-Woo ;
Cohen, Marvin L. ;
Louie, Steven G. .
PHYSICAL REVIEW LETTERS, 2006, 97 (21)
[49]   Spin qubits in graphene quantum dots [J].
Trauzettel, Bjoern ;
Bulaev, Denis V. ;
Loss, Daniel ;
Burkard, Guido .
NATURE PHYSICS, 2007, 3 (03) :192-196
[50]   Sub-Poissonian shot noise in graphene [J].
Tworzydlo, J. ;
Trauzettel, B. ;
Titov, M. ;
Rycerz, A. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW LETTERS, 2006, 96 (24)