Determination of the mobility gap of intrinsic μc-Si:H in p-i-n solar cells

被引:47
作者
Pieters, B. E. [1 ]
Stiebig, H. [1 ]
Zeman, M. [2 ]
van Swaaij, R. A. C. M. M. [2 ]
机构
[1] Forschungszentrum Julich, Inst Energieforsch IEF5, D-52425 Julich, Germany
[2] Delft Univ Technol, Fac EEMCS, DIMES ECTM Lab, NL-2600 GB Delft, Netherlands
关键词
elemental semiconductors; energy gap; hydrogen; silicon; solar cells; MICROCRYSTALLINE SILICON; AMORPHOUS-SILICON; PHOTOLUMINESCENCE; DISCONTINUITIES; ENERGY;
D O I
10.1063/1.3078044
中图分类号
O59 [应用物理学];
学科分类号
摘要
Microcrystalline silicon (mu c-Si:H) is a promising material for application in multijunction thin-film solar cells. A detailed analysis of the optoelectronic properties is impeded by its complex microstructural properties. In this work we will focus on determining the mobility gap of mu c-Si:H material. Commonly a value of 1.1 eV is found, similar to the bandgap of crystalline silicon. However, in other studies mobility gap values have been reported to be in the range of 1.48-1.59 eV, depending on crystalline volume fraction. Indeed, for the accurate modeling of mu c-Si:H solar cells, it is paramount that key parameters such as the mobility gap are accurately determined. A method is presented to determine the mobility gap of the intrinsic layer in a p-i-n device from the voltage-dependent dark current activation energy. We thus determined a value of 1.19 eV for the mobility gap of the intrinsic layer of an mu c-Si:H p-i-n device. We analyze the obtained results in detail through numerical simulations of the mu c-Si:H p-i-n device. The applicability of the method for other than the investigated devices is discussed with the aid of numerical simulations.
引用
收藏
页数:10
相关论文
共 31 条
[1]   BAND TAILS IN HYDROGENATED AMORPHOUS-SILICON AND SILICON-GERMANIUM ALLOYS [J].
ALJISHI, S ;
COHEN, JD ;
JIN, S ;
LEY, L .
PHYSICAL REVIEW LETTERS, 1990, 64 (23) :2811-2814
[2]   NOISE SPECTROSCOPY IN AMORPHOUS-SILICON FILMS [J].
ANDERSON, JC .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1983, 48 (01) :31-45
[3]   Applying analytical and numerical methods for the analysis of microcrystalline silicon solar cells [J].
Brammer, T. ;
Stiebig, H. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (18-19) :3021-3030
[4]  
BRAMMER T, 2001, MAT RES SOC S P, V664
[5]  
Carius R, 2005, J OPTOELECTRON ADV M, V7, P121
[6]   Influence of crystalline volume fraction on the performance of high mobility microcrystalline silicon thin-film transistors [J].
Chan, Kah-Yoong ;
Knipp, Dietmar ;
Gordijn, Aad ;
Stiebig, Helmut .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (19-25) :2505-2508
[7]   A simple optical properties modeling of microcrystalline silicon for the energy conversion application by the effective medium approximation method [J].
Cho, WY ;
Lim, KS .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1997, 36 (3A) :1094-1098
[8]   Evolution of microstructure and phase in amorphous, protocrystalline, and micro crystalline silicon studied by real time spectroscopic ellipsometry [J].
Collins, RW ;
Ferlauto, AS ;
Ferreira, GM ;
Chen, C ;
Koh, J ;
Koval, RJ ;
Lee, Y ;
Pearce, JM ;
Wronski, CR .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 78 (1-4) :143-180
[9]   Hole drift-mobility measurements in microcrystalline silicon [J].
Dylla, T ;
Finger, F ;
Schiff, EA .
APPLIED PHYSICS LETTERS, 2005, 87 (03)
[10]  
Dylla T, 2004, MATER RES SOC SYMP P, V808, P109