Nanosoldering Carbon Nanotube Junctions by Local Chemical Vapor Deposition for Improved Device Performance

被引:39
作者
Do, Jae-Won [1 ,6 ]
Estrada, David [1 ,5 ]
Xie, Xu [2 ,3 ]
Chang, Noel N. [4 ]
Mallek, Justin [4 ]
Girolami, Gregory S. [4 ,6 ]
Rogers, John A. [2 ,3 ,4 ,5 ,6 ]
Pop, Eric [1 ,5 ,6 ]
Lyding, Joseph W. [6 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[5] Univ Illinois, Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[6] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
ARRAYS; PALLADIUM; TRANSPORT; CIRCUITS; ENERGY;
D O I
10.1021/nl4026083
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The performance of carbon nanotube network (CNN) devices is usually limited by the high resistance of individual nanotube junctions (NJs). We present a novel method to reduce this resistance through a nanoscale chemical vapor deposition (CVD) process. By passing current through the devices in the presence of a gaseous CVD precursor, localized nanoscale Joule heating induced at the NJs stimulates the selective and self-limiting deposition of metallic nano-solder. The effectiveness of this nanosoldering process depends on the work function of the deposited metal (here Pd or HfB2), and it can improve the on/off current ratio of a CNN device by nearly an order of magnitude. This nanosoldering technique could also be applied to other device types where nanoscale resistance components limit overall device performance.
引用
收藏
页码:5844 / 5850
页数:7
相关论文
共 54 条
[1]   Theory of nanocomposite network transistors for macroelectronics applications [J].
Alam, M. A. ;
Pimparkar, N. ;
Kumar, S. ;
Murthy, J. .
MRS BULLETIN, 2006, 31 (06) :466-470
[2]   High-Field Transport and Thermal Reliability of Sorted Carbon Nanotube Network Devices [J].
Behnam, Ashkan ;
Sangwan, Vinod K. ;
Zhong, Xuanyu ;
Lian, Feifei ;
Estrada, David ;
Jariwala, Deep ;
Hoag, Alicia J. ;
Lauhon, Lincoln J. ;
Marks, Tobin J. ;
Hersam, Mark C. ;
Pop, Eric .
ACS NANO, 2013, 7 (01) :482-490
[3]   Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates [J].
Cao, Qing ;
Kim, Hoon-sik ;
Pimparkar, Ninad ;
Kulkarni, Jaydeep P. ;
Wang, Congjun ;
Shim, Moonsub ;
Roy, Kaushik ;
Alam, Muhammad A. ;
Rogers, John A. .
NATURE, 2008, 454 (7203) :495-U4
[4]  
Cao Q, 2013, NAT NANOTECHNOL, V8, P180, DOI [10.1038/nnano.2012.257, 10.1038/NNANO.2012.257]
[5]   Engineering carbon nanotubes and nanotube circuits using electrical breakdown [J].
Collins, PC ;
Arnold, MS ;
Avouris, P .
SCIENCE, 2001, 292 (5517) :706-709
[6]   Controlling energy-level alignments at carbon nanotube/Au contacts [J].
Cui, XD ;
Freitag, M ;
Martel, R ;
Brus, L ;
Avouris, P .
NANO LETTERS, 2003, 3 (06) :783-787
[7]   Controlling doping and carrier injection in carbon nanotube transistors [J].
Derycke, V ;
Martel, R ;
Appenzeller, J ;
Avouris, P .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2773-2775
[8]  
Do J.-W., 2012, 2012 12 IEEE INT C N, P8325
[9]   Imaging dissipation and hot spots in carbon nanotube network transistors [J].
Estrada, David ;
Pop, Eric .
APPLIED PHYSICS LETTERS, 2011, 98 (07)
[10]   Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization [J].
Estrada, David ;
Dutta, Sumit ;
Liao, Albert ;
Pop, Eric .
NANOTECHNOLOGY, 2010, 21 (08)