Correcting for Electrocatalyst Desorption and Inactivation in Chronoamperometry Experiments

被引:48
作者
Fourmond, Vincent [1 ,2 ]
Lautier, Thomas [3 ,4 ,5 ]
Baffert, Carole [1 ,2 ]
Leroux, Fanny [1 ,2 ]
Liebgott, Pierre-Pol [1 ,2 ]
Dementin, Sebastien [1 ,2 ]
Rousset, Marc [1 ,2 ]
Arnoux, Pascal [2 ,6 ,7 ]
Pignol, David [2 ,6 ,7 ]
Meynial-Salles, Isabelle [3 ,4 ,5 ]
Soucaille, Phillippe [3 ,4 ,5 ]
Bertrand, Patrick [1 ,2 ]
Leger, Christophe [1 ,2 ]
机构
[1] CNRS, Unite Bioenerget & Ingn Prot BIP, IMM, UPR 9036, F-13402 Marseille 20, France
[2] Aix Marseille Univ, F-13333 Marseille 3, France
[3] Univ Toulouse, INSA, UPS, INP,LISBP, F-31077 Toulouse, France
[4] INRA, Ingn Syst Biol & Procedes UMR792, F-31400 Toulouse, France
[5] CNRS, UMR5504, F-31400 Toulouse, France
[6] CEA, IBEB, SBVME, LBC, F-13108 St Paul Les Durance, France
[7] CNRS, LBVME, UMR 6191, F-13108 St Paul Les Durance, France
关键词
PERIPLASMIC NITRATE REDUCTASE; PROTEIN FILM VOLTAMMETRY; NIFE HYDROGENASE; ACTIVE-SITE; CLOSTRIDIUM-ACETOBUTYLICUM; HORSERADISH-PEROXIDASE; NITRITE REDUCTASE; SUBSTRATE-BINDING; CARBON NANOTUBES; CATALYTIC CYCLE;
D O I
10.1021/ac8025702
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Chronoamperometric experiments with adsorbed electrocatalysts are commonly performed either for analytical purposes or for studying the catalytic mechanism of a redox enzyme. In the context of amperometric sensors, the current may be recorded as a function of time while the analyte concentration is being increased to determine a linearity range. In mechanistic studies of redox enzymes, chronoamperometry proved powerful for untangling the effects of electrode potential and time, which are convoluted in cyclic voltammetric measurements, and for studying the energetics and kinetics of inhibition. In all such experiments, the fact that the catalyst's coverage and/or activity decreases over time distorts the data. This may hide meaningful features, introduce systematic errors, and limit the accuracy of the measurements. We propose a general and surprisingly simple method for correcting for electrocatalyst desorption and inactivation, which greatly increases the precision of chronoamperometric experiments. Rather than subtracting a baseline, this consists in dividing the current, either by a synthetic signal that is proportional to the instant electroactive coverage or by the signal recorded in a control experiment. In the latter, the change in current may result from film loss only or from film loss plus catalyst inactivation. We describe the different strategies for obtaining the control signal by analyzing various data recorded with adsorbed redox enzymes: nitrate reductase, NiFe hydrogenase, and FeFe hydrogenase. In each case we discuss the trustfulness and the benefit of the correction. This method also applies to experiments where electron transfer is mediated, rather than direct, providing the current is proportional to the time-dependent concentration of catalyst.
引用
收藏
页码:2962 / 2968
页数:7
相关论文
共 43 条
[31]   Direct electrochemistry of redox enzymes as a tool for mechanistic studies [J].
Leger, Christophe ;
Bertrand, Patrick .
CHEMICAL REVIEWS, 2008, 108 (07) :2379-2438
[32]   Experimental approaches to kinetics of gas diffusion in hydrogenase [J].
Leroux, Fanny ;
Dementin, Sebastien ;
Burlatt, Benedicte ;
Cournac, Laurent ;
Volbeda, Anne ;
Champ, Stephanie ;
Martin, Lydie ;
Guigliarelli, Bruno ;
Bertrand, Patrick ;
Fontecilla-Camps, Juan ;
Rousset, Marc ;
Leger, Christophe .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (32) :11188-11193
[33]   Oxygen-tolerant H2 Oxidation by Membrane-bound [NiFe] Hydrogenases of Ralstonia Species COPING WITH LOW LEVEL H2 IN AIR [J].
Ludwig, Marcus ;
Cracknell, James A. ;
Vincent, Kylie A. ;
Armstrong, Fraser A. ;
Lenz, Oliver .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (01) :465-477
[34]   Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate [J].
Ozcan, Levent ;
Sahin, Yuecel ;
Turk, Hayrettin .
BIOSENSORS & BIOELECTRONICS, 2008, 24 (04) :512-517
[35]   Electrochemical investigations of the interconversions between catalytic and inhibited states of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans [J].
Parkin, Alison ;
Cavazza, Christine ;
Fontecilla-Camps, Juan C. ;
Armstrong, Fraser A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (51) :16808-16815
[36]   Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles [J].
Salimi, Abdollah ;
Noorbakhash, Abdollah ;
Sharifi, Ensieh ;
Semnani, Abolfazl .
BIOSENSORS & BIOELECTRONICS, 2008, 24 (04) :792-798
[37]  
*SOAS, SOAS MAN
[38]  
*SOAS, SOAS EL SOFTW
[39]   Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition [J].
Vaz-Dominguez, Cristina ;
Campuzano, Susana ;
Rudiger, Olaf ;
Pita, Marcos ;
Gorbacheva, Marina ;
Shleev, Sergey ;
Fernandez, Victor M. ;
De lacey, Antonio L. .
BIOSENSORS & BIOELECTRONICS, 2008, 24 (04) :531-537
[40]   Investigating and exploiting the electrocatalytic properties of hydrogenases [J].
Vincent, Kylie A. ;
Parkin, Alison ;
Armstrong, Fraser A. .
CHEMICAL REVIEWS, 2007, 107 (10) :4366-4413