Engineering artificial graphene in a two-dimensional electron gas

被引:177
作者
Gibertini, Marco [1 ]
Singha, Achintya
Pellegrini, Vittorio
Polini, Marco
Vignale, Giovanni [2 ]
Pinczuk, Aron [3 ,4 ]
Pfeiffer, Loren N. [5 ]
West, Ken W. [5 ]
机构
[1] CNR, INFM, NEST, I-56126 Pisa, Italy
[2] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA
[3] Columbia Univ, Dept Phys, New York, NY 10027 USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[5] Alcatel Lucent Inc, Bell Labs, Murray Hill, NJ 07974 USA
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 24期
关键词
electron mobility; Fermi level; gallium arsenide; graphene; III-V semiconductors; two-dimensional electron gas; SUSPENDED GRAPHENE; TRANSPORT;
D O I
10.1103/PhysRevB.79.241406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
At low energy, electrons in doped graphene sheets behave like massless Dirac fermions with a Fermi velocity, which does not depend on carrier density. Here we show that modulating a two-dimensional electron gas with a long-wavelength periodic potential with honeycomb symmetry can lead to the creation of isolated massless Dirac points with tunable Fermi velocity. We provide detailed theoretical estimates to realize such artificial graphenelike system and discuss an experimental realization in a modulation-doped GaAs quantum well. Ultrahigh-mobility electrons with linearly dispersing bands might open new venues for the studies of Dirac-fermion physics in semiconductors.
引用
收藏
页数:4
相关论文
共 35 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]  
Aschcroft N., 1976, Solid State Physics
[3]   Chirality and correlations in graphene [J].
Barlas, Yafis ;
Pereg-Barnea, T. ;
Polini, Marco ;
Asgari, Reza ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[7]   Quantum computing via defect states in two-dimensional antidot lattices [J].
Flindt, C ;
Mortensen, NA ;
Jauho, AP .
NANO LETTERS, 2005, 5 (12) :2515-2518
[8]   Evidence of correlation in spin excitations of few-electron quantum dots -: art. no. 266806 [J].
García, CP ;
Pellegrini, V ;
Pinczuk, A ;
Rontani, M ;
Goldoni, G ;
Molinari, E ;
Dennis, BS ;
Pfeiffer, LN ;
West, KW .
PHYSICAL REVIEW LETTERS, 2005, 95 (26)
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Graphene: Exploring carbon flatland [J].
Geim, Andrey K. ;
MacDonald, Allan H. .
PHYSICS TODAY, 2007, 60 (08) :35-41