Homogeneous core/shell ZnO/ZnMgO quantum well heterostructures on vertical ZnO nanowires

被引:48
作者
Cao, B. Q. [1 ]
Zuniga-Perez, J. [1 ,3 ]
Boukos, N. [2 ]
Czekalla, C. [1 ]
Hilmer, H. [1 ]
Lenzner, J. [1 ]
Travlos, A. [2 ]
Lorenz, M. [1 ]
Grundmann, M. [1 ]
机构
[1] Univ Leipzig, Inst Expt Phys 2, Fak Phys & Geowissensch, D-04103 Leipzig, Germany
[2] Natl Ctr Sci Res Demokritos, Inst Mat Sci, GR-15310 Aghia Paraskevi, Greece
[3] CNRS, CRHEA, F-06560 Valbonne, France
关键词
D O I
10.1088/0957-4484/20/30/305701
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Low-area density ZnO nanowire arrays, growing perpendicularly to the substrate, are synthesized with high-pressure pulsed laser deposition. The introduction of a ZnO buffer layer enables us to fabricate individual nanowires several micrometres apart (area density < 0.1 nanowire mu m(-2)), suppressing any shadowing effect by neighbouring nanowires during subsequent growth. These low density ZnO nanowires, whose c-axis is perpendicular to the substrate surface, are then used as templates to grow ZnO/ZnMgO core-shell nanowire heterostructures with conventional low-pressure pulsed laser deposition. Cathodoluminescence spectroscopy as well as transmission electron microscopy show that a sharp interface forms between the ZnO core and the ZnMgO shell. Based on these findings, we have grown a series of radial ZnO/ZnMgO quantum wells with different thicknesses that exhibit quantum confinement effects, with thicker quantum wells emitting at lower energies. Spatially resolved cathodoluminescence confirms the homogeneity of the quantum well structure along the full nanowire length of about 3 mu m.
引用
收藏
页数:8
相关论文
共 26 条
[1]   Heterointerfaces in Semiconductor Nanowires [J].
Agarwal, Ritesh .
SMALL, 2008, 4 (11) :1872-1893
[2]   Fabrication and photoluminescent characteristics of ZnO/Mg0.2Zn0.8O coaxial nanorod single quantum well structures [J].
Bae, Jun Young ;
Yoo, Jinkyoung ;
Yi, Gyu-Chul .
APPLIED PHYSICS LETTERS, 2006, 89 (17)
[4]   Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition [J].
Cao, B. Q. ;
Lorenz, M. ;
Rahm, A. ;
von Wenckstern, H. ;
Czekalla, C. ;
Lenzner, J. ;
Benndorf, G. ;
Grundmann, M. .
NANOTECHNOLOGY, 2007, 18 (45)
[5]   p-type conducting ZnO:P microwires prepared by direct carbothermal growth [J].
Cao, B. Q. ;
Lorenz, M. ;
Brandt, M. ;
von Wenckstern, H. ;
Lenzner, J. ;
Biehne, G. ;
Grundmann, M. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2008, 2 (01) :37-39
[6]   Spatial fluctuations of optical emission from single ZnO/MgZnO nanowire quantum wells [J].
Czekalla, C. ;
Guinard, J. ;
Hanisch, C. ;
Cao, B. Q. ;
Kaidashev, E. M. ;
Boukos, N. ;
Travlos, A. ;
Renard, J. ;
Gayral, B. ;
Dang, D. Le Si ;
Lorenz, M. ;
Grundmann, M. .
NANOTECHNOLOGY, 2008, 19 (11)
[7]  
GRUNDMANN M, 2008, HDB SELF ASSEMBLED S, pCH9
[8]   Nanowires for integrated multicolor nanophotonics [J].
Huang, Y ;
Duan, XF ;
Lieber, CM .
SMALL, 2005, 1 (01) :142-147
[9]   Quantum confinement effect in ZnO/Mg0.2Zn0.8O multishell nanorod heterostructures -: art. no. 023102 [J].
Jang, ES ;
Bae, JY ;
Yoo, J ;
Park, WI ;
Kim, DW ;
Yi, GC ;
Yatsui, T ;
Ohtsu, M .
APPLIED PHYSICS LETTERS, 2006, 88 (02) :1-3
[10]   Formation and photoluminescent properties of embedded ZnO quantum dots in ZnO/ZnMgO multiple-quantum-well-structured nanorods [J].
Kim, Chinkyo ;
Park, Won Il ;
Yi, Gyu-Chul ;
Kim, Miyoung .
APPLIED PHYSICS LETTERS, 2006, 89 (11)