Comments on "Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2"

被引:10
作者
Barry, DA [1 ]
Li, L
Jeng, DS
机构
[1] Univ Edinburgh, Edinburgh EH9 3JL, Midlothian, Scotland
[2] Univ Queensland, Sch Engn, St Lucia, Qld, Australia
[3] Univ Sydney, Dept Civil Engn, Sydney, NSW 2006, Australia
关键词
algorithms; approximation methods; error estimation; finite word length effects; iterative methods; round-off errors;
D O I
10.1109/TSP.2004.826154
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Lambert W function appears in a wide variety of circumstances, including the recent application to signal processing referred to in the paper under discussion. Besides applications, a sizable body of mathematical analysis has been reported. The original paper presented a numerical algorithm for computation of W-1. An existing, similar algorithm is presented. Iterative improvement of the W-1 estimates is also discussed, and issues concerning computational efficiency and possible sources of rounding error in fixed precision computational environments are identified. Existing, public-domain software takes into account all the identified numerical issues and produces estimates of W to near the precision available on the host machine.
引用
收藏
页码:1456 / 1458
页数:3
相关论文
共 8 条
[1]   A CLASS OF EXACT-SOLUTIONS FOR RICHARDS EQUATION [J].
BARRY, DA ;
PARLANGE, JY ;
SANDER, GC ;
SIVAPALAN, M .
JOURNAL OF HYDROLOGY, 1993, 142 (1-4) :29-46
[2]   Analytical approximations for real values of the Lambert W-function [J].
Barry, DA ;
Parlange, JY ;
Li, L ;
Prommer, H ;
Cunningham, CJ ;
Stagnitti, E .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2000, 53 (1-2) :95-103
[3]   REAL VALUES OF THE W-FUNCTION [J].
BARRY, DA ;
CULLIGANHENSLEY, PJ ;
BARRY, SJ .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (02) :161-171
[4]  
BARRY DA, 1995, ACM T MATH SOFTWARE, V21, P172, DOI 10.1145/203082.203088
[5]   Analytical approximations for real values of the Lambert W-function (vol 53, pg 95, 2000) [J].
Barry, DA ;
Parlange, JY ;
Li, L ;
Prommer, H ;
Cunningham, CJ ;
Stagnitti, F .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 59 (06) :543-543
[6]   Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2 [J].
Chapeau-Blondeau, F ;
Monir, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (09) :2160-2165
[7]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359
[8]   SOLUTION OF TRANSCENDENTAL EQUATION WEW = X [C5] [J].
FRITSCH, FN ;
SHAFER, RE ;
CROWLEY, WP .
COMMUNICATIONS OF THE ACM, 1973, 16 (02) :123-124