Machine-Learning Energy Gaps of Porphyrins with Molecular Graph Representations

被引:43
作者
Li, Zheng [1 ]
Omidvar, Noushin [1 ]
Chin, Wei Shan [1 ]
Robb, Esther [1 ]
Morris, Amanda [2 ]
Achenie, Luke [1 ]
Xin, Hongliang [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
FINGERPRINT SIMILARITY SEARCH; ELECTROTOPOLOGICAL-STATE; SENSITIVITY-ANALYSIS; TOPOLOGICAL INDEXES; DISCOVERY; SYSTEMS; PERFORMANCE; EFFICIENCY; DESIGN; MODELS;
D O I
10.1021/acs.jpca.8b02842
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular functionalization of porphyrins opens countless new opportunities in tailoring their physicochemical properties for light-harvesting applications. However, the immense materials space spanned by a vast number of substituent ligands and chelating metal ions prohibits high-throughput screening of combinatorial libraries. In this work, machine-learning algorithms equipped with the domain knowledge of chemical graph theory were employed for predicting the energy gaps of >12 000 porphyrins from the Computational Materials Repository. Among a variety of graph-based molecular descriptors, the electrotopological-state index, which encodes electronic and topological structure information, captures the energy gaps of porphyrins with a prediction RMSE < 0.06 eV. Importantly, feature sensitivity analysis suggests that the carbon structural motif in methine bridges connected to the anchor group predominantly influences the energy gaps of porphyrins, consistent with the spatial distribution of their frontier molecular orbitals from quantum-chemical calculations.
引用
收藏
页码:4571 / 4578
页数:8
相关论文
共 79 条
  • [11] Bypassing the Kohn-Sham equations with machine learning
    Brockherde, Felix
    Vogt, Leslie
    Li, Li
    Tuckerman, Mark E.
    Burke, Kieron
    Mueller, Klaus-Robert
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [12] Molecular fingerprint similarity search in virtual screening
    Cereto-Massague, Adria
    Jose Ojeda, Maria
    Valls, Cristina
    Mulero, Miguel
    Garcia-Vallve, Santiago
    Pujadas, Gerard
    [J]. METHODS, 2015, 71 : 58 - 63
  • [13] Porphyrin-Based Nanostructures for Photocatalytic Applications
    Chen, Yingzhi
    Li, Aoxiang
    Huang, Zheng-Hong
    Wang, Lu-Ning
    Kang, Feiyu
    [J]. NANOMATERIALS, 2016, 6 (03):
  • [14] Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices
    Contrera, JF
    Matthews, EJ
    Benz, RD
    [J]. REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2003, 38 (03) : 243 - 259
  • [15] A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds
    de Jong, Maarten
    Chen, Wei
    Notestine, Randy
    Persson, Kristin
    Ceder, Gerbrand
    Jain, Anubhav
    Asta, Mark
    Gamst, Anthony
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [16] Devillers J., 1999, Topological Indices and Related Descriptors in QSAR and QSPR
  • [17] Photocatalytic Activity of Novel Tin Porphyrin/TiO2 Based Composites
    Duan, Ming-yue
    Li, Jun
    Mele, Giuseppe
    Wang, Chen
    Lue, Xiang-fei
    Vasapollo, Giuseppe
    Zhang, Feng-xing
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (17) : 7857 - 7862
  • [18] Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error
    Faber, Felix A.
    Hutchison, Luke
    Huang, Bing
    Gilmer, Justin
    Schoenholz, Samuel S.
    Dahl, George E.
    Vinyals, Oriol
    Kearnes, Steven
    Riley, Patrick F.
    von Lilienfeld, O. Anatole
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (11) : 5255 - 5264
  • [19] Fateeva A., 2012, Angew. Chem. Int. Ed, V124, P7558, DOI DOI 10.1002/ANGE.V124.30
  • [20] Crystal Structure Representation for Neural Networks using Topological Approach
    Fedorov, Aleksandr V.
    Shamanaev, Ivan V.
    [J]. MOLECULAR INFORMATICS, 2017, 36 (08)