Machine-Learning Energy Gaps of Porphyrins with Molecular Graph Representations

被引:43
作者
Li, Zheng [1 ]
Omidvar, Noushin [1 ]
Chin, Wei Shan [1 ]
Robb, Esther [1 ]
Morris, Amanda [2 ]
Achenie, Luke [1 ]
Xin, Hongliang [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
FINGERPRINT SIMILARITY SEARCH; ELECTROTOPOLOGICAL-STATE; SENSITIVITY-ANALYSIS; TOPOLOGICAL INDEXES; DISCOVERY; SYSTEMS; PERFORMANCE; EFFICIENCY; DESIGN; MODELS;
D O I
10.1021/acs.jpca.8b02842
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular functionalization of porphyrins opens countless new opportunities in tailoring their physicochemical properties for light-harvesting applications. However, the immense materials space spanned by a vast number of substituent ligands and chelating metal ions prohibits high-throughput screening of combinatorial libraries. In this work, machine-learning algorithms equipped with the domain knowledge of chemical graph theory were employed for predicting the energy gaps of >12 000 porphyrins from the Computational Materials Repository. Among a variety of graph-based molecular descriptors, the electrotopological-state index, which encodes electronic and topological structure information, captures the energy gaps of porphyrins with a prediction RMSE < 0.06 eV. Importantly, feature sensitivity analysis suggests that the carbon structural motif in methine bridges connected to the anchor group predominantly influences the energy gaps of porphyrins, consistent with the spatial distribution of their frontier molecular orbitals from quantum-chemical calculations.
引用
收藏
页码:4571 / 4578
页数:8
相关论文
共 79 条
  • [31] Emerging applications of porphyrins in photomedicine
    Huang, Haoyuan
    Song, Wentao
    Rieffel, James
    Lovell, Jonathan F.
    [J]. FRONTIERS IN PHYSICS, 2015, 3 (APR)
  • [32] Structure and photophysical properties of porphyrin-modified metal nanoclusters with different chain lengths
    Imahori, H
    Kashiwagi, Y
    Endo, Y
    Hanada, T
    Nishimura, Y
    Yamazaki, I
    Araki, Y
    Ito, O
    Fukuzumi, S
    [J]. LANGMUIR, 2004, 20 (01) : 73 - 81
  • [33] Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints
    Isayev, Olexandr
    Fourches, Denis
    Muratov, Eugene N.
    Oses, Corey
    Rasch, Kevin
    Tropsha, Alexander
    Curtarolo, Stefano
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (03) : 735 - 743
  • [34] Chemical Graphs, Molecular Matrices and Topological Indices in Chemoinformatics and Quantitative Structure-Activity Relationships
    Ivanciuc, Ovidiu
    [J]. CURRENT COMPUTER-AIDED DRUG DESIGN, 2013, 9 (02) : 153 - 163
  • [35] On-the-Fly Machine Learning of Atomic Potential in Density Functional Theory Structure Optimization
    Jacobsen, T. L.
    Jorgensen, M. S.
    Hammer, B.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (02)
  • [36] Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network
    Janet, Jon Paul
    Chan, Lydia
    Kulik, Heather J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (05): : 1064 - 1071
  • [37] Porphyrins as Photoredox Catalysts: Experimental and Theoretical Studies
    Jasinska, Katarzyna Rybicka
    Shan, Wenqian
    Zawada, Katarzyna
    Kadish, Karl M.
    Gryko, Dorota
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (47) : 15451 - 15458
  • [38] Jasrasaria D., 2016, ARXIV160805747
  • [39] Joni G., 1985, PRIMARY PHOTO PROCES, P349
  • [40] DERIVATION AND SIGNIFICANCE OF VALENCE MOLECULAR CONNECTIVITY
    KIER, LB
    HALL, LH
    [J]. JOURNAL OF PHARMACEUTICAL SCIENCES, 1981, 70 (06) : 583 - 589