Machine-Learning Energy Gaps of Porphyrins with Molecular Graph Representations

被引:43
作者
Li, Zheng [1 ]
Omidvar, Noushin [1 ]
Chin, Wei Shan [1 ]
Robb, Esther [1 ]
Morris, Amanda [2 ]
Achenie, Luke [1 ]
Xin, Hongliang [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
FINGERPRINT SIMILARITY SEARCH; ELECTROTOPOLOGICAL-STATE; SENSITIVITY-ANALYSIS; TOPOLOGICAL INDEXES; DISCOVERY; SYSTEMS; PERFORMANCE; EFFICIENCY; DESIGN; MODELS;
D O I
10.1021/acs.jpca.8b02842
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular functionalization of porphyrins opens countless new opportunities in tailoring their physicochemical properties for light-harvesting applications. However, the immense materials space spanned by a vast number of substituent ligands and chelating metal ions prohibits high-throughput screening of combinatorial libraries. In this work, machine-learning algorithms equipped with the domain knowledge of chemical graph theory were employed for predicting the energy gaps of >12 000 porphyrins from the Computational Materials Repository. Among a variety of graph-based molecular descriptors, the electrotopological-state index, which encodes electronic and topological structure information, captures the energy gaps of porphyrins with a prediction RMSE < 0.06 eV. Importantly, feature sensitivity analysis suggests that the carbon structural motif in methine bridges connected to the anchor group predominantly influences the energy gaps of porphyrins, consistent with the spatial distribution of their frontier molecular orbitals from quantum-chemical calculations.
引用
收藏
页码:4571 / 4578
页数:8
相关论文
共 79 条
  • [41] AN ELECTROTOPOLOGICAL-STATE INDEX FOR ATOMS IN MOLECULES
    KIER, LB
    HALL, LH
    [J]. PHARMACEUTICAL RESEARCH, 1990, 7 (08) : 801 - 807
  • [42] Global Sensitivity Analysis Challenges in Biological Systems Modeling
    Kiparissides, A.
    Kucherenko, S. S.
    Mantalaris, A.
    Pistikopoulos, E. N.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (15) : 7168 - 7180
  • [43] The Computational Materials Repository
    Landis, David D.
    Hummelshoj, Jens S.
    Nestorov, Svetlozar
    Greeley, Jeff
    Dulak, Marcin
    Bligaard, Thomas
    Norskov, Jens K.
    Jacobsen, Karsten W.
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2012, 14 (06) : 51 - 57
  • [44] Discovery and Optimization of Materials Using Evolutionary Approaches
    Le, Tu C.
    Winkler, David A.
    [J]. CHEMICAL REVIEWS, 2016, 116 (10) : 6107 - 6132
  • [45] Design and applications of molecular probes containing porphyrin derivatives
    Lee, Hosoowi
    Hong, Kyeong-Im
    Jang, Woo-Dong
    [J]. COORDINATION CHEMISTRY REVIEWS, 2018, 354 : 46 - 73
  • [46] Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques
    Lee, Joohwi
    Seko, Atsuto
    Shitara, Kazuki
    Nakayama, Keita
    Tanaka, Isao
    [J]. PHYSICAL REVIEW B, 2016, 93 (11)
  • [47] High-throughput screening of bimetallic catalysts enabled by machine learning
    Li, Zheng
    Wang, Siwen
    Chin, Wei Shan
    Achenie, Luke E.
    Xin, Hongliang
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (46) : 24131 - 24138
  • [48] Feature engineering of machine-learning chemisorption models for catalyst design
    Li, Zheng
    Ma, Xianfeng
    Xin, Hongliang
    [J]. CATALYSIS TODAY, 2017, 280 : 232 - 238
  • [49] Modifying the Chemical Structure of a Porphyrin Small Molecule with Benzothiophene Groups for the Reproducible Fabrication of High Performance Solar Cells
    Liang, Tianxiang
    Xiao, Liangang
    Gao, Ke
    Xu, Wenzhan
    Peng, Xiaobin
    Cao, Yong
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (08) : 7131 - 7138
  • [50] Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, Zn
    Liao, MS
    Scheiner, S
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (01) : 205 - 219