The characteristic classes of Morita equivalent star products on symplectic manifolds

被引:31
作者
Bursztyn, H [1 ]
Waldmann, S
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Freiburg, Fak Phys, D-79104 Freiburg, Germany
关键词
D O I
10.1007/s002200200657
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we give a complete characterization of Morita equivalent star products on symplectic manifolds in terms of their characteristic classes: two star products star and star' on (M,omega) are Morita equivalent if and only if there exists a symplectomorphism psi : M --> M such that the relative class t(star, psi*(star')) is 2pi i-integral. For star products on cotangent bundles, we show that this integrality condition is related to Dirac's quantization condition for magnetic charges.
引用
收藏
页码:103 / 121
页数:19
相关论文
共 37 条
[1]  
[Anonymous], SELECTA MATH
[2]  
Bass H., 1968, Algebraic K-theory
[3]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[4]   ON MORITA EQUIVALENCE OF NUCLEAR C STAR-ALGEBRAS [J].
BEER, W .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1982, 26 (03) :249-267
[5]   Equivalence of star products [J].
Bertelson, M ;
Cahen, M ;
Gutt, S .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A93-A107
[6]   A remark on formal KMS states in deformation quantization [J].
Bordemann, M ;
Romer, H ;
Waldmann, S .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 45 (01) :49-61
[7]   Formal GNS construction and states in deformation quantization [J].
Bordemann, M ;
Waldmann, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 195 (03) :549-583
[8]   Homogeneous Fedosov star products on cotangent bundles - II: GNS representations, the WKB expansion, traces, and applications [J].
Bordemann, M ;
Neumaier, N ;
Waldmann, S .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 29 (03) :199-234
[9]   Homogeneous Fedosov star products on cotangent bundles - I: Weyl and standard ordering with differential operator representation [J].
Bordemann, M ;
Neumaier, N ;
Waldmann, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 198 (02) :363-396
[10]  
BORDEMANN M, FRTHEP9824