Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation

被引:87
作者
Yang, VXD
Gordon, ML
Mok, A
Zhao, YH
Chen, ZP
Cobbold, RSC
Wilson, BC
Vitkin, IA
机构
[1] Univ Toronto, Dept Med Biophys, Toronto, ON M5G 2M9, Canada
[2] Univ Toronto, MD PhD Program, Toronto, ON M5S 1A8, Canada
[3] Univ Toronto, Inst Biomed Engn, Toronto, ON M5S 3G9, Canada
[4] Univ Toronto, Dept Radiat Oncol, Toronto, ON M5G 2M9, Canada
[5] Univ Toronto, Princess Margaret Hosp, Hlth Network, Ontario Canc Inst, Toronto, ON M5G 2M9, Canada
[6] Univ Calif Irvine, Beckman Laser Inst & Med Clin, Irvine, CA 92612 USA
基金
加拿大健康研究院;
关键词
optical coherence tomography (OCT) microstructural imaging; optical Doppler tomography (ODT); blood flow; microcirculation;
D O I
10.1016/S0030-4018(02)01501-8
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Significant improvements are reported in the measurable velocity range and tissue motion artefact rejection of a phase-resolved optical coherence tomography and optical Doppler tomography system. Phase information derived from an in-phase and quadrature demodulator is used to estimate the mean blood flow velocity by the Kasai autocorrelation algorithm. A histogram-based velocity segmentation algorithm is used to determine block tissue movement and remove tissue motion artefacts that can be faster or slower in velocity than that of the microcirculation. The minimum detectable Doppler frequency is about 100 Hz, corresponding to a flow velocity resolution of 30 mum/s with an axial-line scanning frequency of 8.05 kHz and a mean phase change measured over eight sequential scans: the maximum detectable Doppler frequency is +/-4 kHz (for bi-directional flow) before phase wrap-around. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 26 条
[1]   Investigating pulsed dye laser-blood vessel interaction with color Doppler optical coherence tomography [J].
Barton, JK ;
Welch, AJ ;
Izatt, JA .
OPTICS EXPRESS, 1998, 3 (06) :251-256
[2]   Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography [J].
Bouma, BE ;
Tearney, GJ .
OPTICS LETTERS, 1999, 24 (08) :531-533
[3]  
Burton AC., 1972, PHYSL BIOPHYSICS CIR, V2
[4]   Optical Doppler tomography [J].
Chen, ZP ;
Zhao, YH ;
Srinivas, SM ;
Nelson, JS ;
Prakash, N ;
Frostig, RD .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999, 5 (04) :1134-1142
[5]   Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media [J].
Chen, ZP ;
Milner, TE ;
Dave, D ;
Nelson, JS .
OPTICS LETTERS, 1997, 22 (01) :64-66
[6]   In vivo ultrahigh-resolution optical coherence tomography [J].
Drexler, W ;
Morgner, U ;
Kärtner, FX ;
Pitris, C ;
Boppart, SA ;
Li, XD ;
Ippen, EP ;
Fujimoto, JG .
OPTICS LETTERS, 1999, 24 (17) :1221-1223
[7]  
FOX SIF, 1987, HUMAN PHYSL
[8]   Ultrasound Doppler measurements of low velocity blood flow: Limitations due to clutter signals from vibrating muscles [J].
Heimdal, A ;
Torp, H .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1997, 44 (04) :873-881
[9]   OPTICAL COHERENCE TOMOGRAPHY [J].
HUANG, D ;
SWANSON, EA ;
LIN, CP ;
SCHUMAN, JS ;
STINSON, WG ;
CHANG, W ;
HEE, MR ;
FLOTTE, T ;
GREGORY, K ;
PULIAFITO, CA ;
FUJIMOTO, JG .
SCIENCE, 1991, 254 (5035) :1178-1181
[10]   Optical coherence tomography and microscopy in gastrointestinal tissues [J].
Izatt, JA ;
Kulkarni, MD ;
Wang, HW ;
Kobayashi, K ;
Sivak, MV .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1996, 2 (04) :1017-1028