Adventitious Roots and Lateral Roots: Similarities and Differences

被引:428
作者
Bellini, Catherine [1 ,2 ]
Pacurar, Daniel I. [1 ]
Perrone, Irene [1 ]
机构
[1] Umea Univ, Dept Plant Physiol, Umea Plant Sci Ctr, SE-90187 Umea, Sweden
[2] AgroParisTech, INRA, UMR 1318, Inst Jean Pierre Bourgin, F-78026 Versailles, France
来源
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 65 | 2014年 / 65卷
关键词
roots; monocotyledons; dicotyledons; phytohormones; environment; vegetative propagation; PHOSPHATE-STARVATION RESPONSES; NATURAL GENETIC-VARIATION; POLAR AUXIN TRANSPORT; OF-FUNCTION MUTATION; ORYZA-SATIVA L; ARABIDOPSIS-THALIANA DEFINE; QUANTITATIVE TRAIT LOCI; LOB-DOMAIN PROTEIN; HD-ZIP PROTEIN; ABSCISIC-ACID;
D O I
10.1146/annurev-arplant-050213-035645
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In addition to its role in water and nutrient uptake, the root system is fundamentally important because it anchors a plant to its substrate. Although a wide variety of root systems exist across different species, all plants have a primary root (derived from an embryonic radicle) and different types of lateral roots. Adventitious roots, by comparison, display the same functions as lateral roots but develop from aerial tissues. In addition, they not only develop as an adaptive response to various stresses, such as wounding or flooding, but also are a key limiting component of vegetative propagation. Lateral and adventitious roots share key elements of the genetic and hormonal regulatory networks but are subject to different regulatory mechanisms. In this review, we discuss the developmental processes that give rise to lateral and adventitious roots and highlight knowledge acquired over the past few years about the mechanisms that regulate adventitious root formation.
引用
收藏
页码:639 / +
页数:41
相关论文
共 306 条
[1]   Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism [J].
Ahkami, Amir H. ;
Lischewski, Sandra ;
Haensch, Klaus-T. ;
Porfirova, Svetlana ;
Hofmann, Joerg ;
Rolletschek, Hardy ;
Melzer, Michael ;
Franken, Philipp ;
Hause, Bettina ;
Druege, Uwe ;
Hajirezaei, Mohammad R. .
NEW PHYTOLOGIST, 2009, 181 (03) :613-625
[2]   The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche [J].
Aida, M ;
Beis, D ;
Heidstra, R ;
Willemsen, V ;
Blilou, I ;
Galinha, C ;
Nussaume, L ;
Noh, YS ;
Amasino, R ;
Scheres, B .
CELL, 2004, 119 (01) :109-+
[3]   Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development [J].
Argyros, Rebecca D. ;
Mathews, Dennis E. ;
Chiang, Yi-Hsuan ;
Palmer, Christine M. ;
Thibault, Derek M. ;
Etheridge, Naomi ;
Argyros, D. Aaron ;
Mason, Michael G. ;
Kieber, Joseph J. ;
Schaller, G. Eric .
PLANT CELL, 2008, 20 (08) :2102-2116
[4]   Novel natural genetic variation controlling the competence to form adventitious roots and shoots from the tomato wild relative Solanum pennellii [J].
Arikita, Fernanda Namie ;
Azevedo, Mariana Silva ;
Scotton, Danielle Camargo ;
Pinto, Maisa de Siqueira ;
Figueira, Antonio ;
Pereira Peres, Lazaro Eustaquio .
PLANT SCIENCE, 2013, 199 :121-130
[5]   Evolution of plant microRNAs and their targets [J].
Axtell, Michael J. ;
Bowman, John L. .
TRENDS IN PLANT SCIENCE, 2008, 13 (07) :343-349
[6]   The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems [J].
Baima, S ;
Possenti, M ;
Matteucci, A ;
Wisman, E ;
Altamura, MM ;
Ruberti, I ;
Morelli, G .
PLANT PHYSIOLOGY, 2001, 126 (02) :643-655
[7]   Anatomical and biochemical events during in vitro rooting of microcuttings from juvenile and mature phases of chestnut [J].
Ballester, A ;
San-José, MC ;
Vidal, N ;
Fernández-Lorenzo, JL ;
Vietez, AM .
ANNALS OF BOTANY, 1999, 83 (06) :619-629
[8]   Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis [J].
Bao, F ;
Shen, JJ ;
Brady, SR ;
Muday, GK ;
Asami, T ;
Yang, ZB .
PLANT PHYSIOLOGY, 2004, 134 (04) :1624-1631
[9]   INVITRO SHOOT DEVELOPMENT OF PRUNUS GF-655-2 - INTERACTION BETWEEN LIGHT AND BENZYLADENINE [J].
BARALDI, R ;
ROSSI, F ;
LERCARI, B .
PHYSIOLOGIA PLANTARUM, 1988, 74 (03) :440-443
[10]   The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450CYP83B1, a modulator of auxin homeostasis [J].
Barlier, I ;
Kowalczyk, M ;
Marchant, A ;
Ljung, K ;
Bhalerao, R ;
Bennett, M ;
Sandberg, G ;
Bellini, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14819-14824