Entanglement monotone derived from Grover's algorithm

被引:65
作者
Biham, O [1 ]
Nielsen, MA
Osborne, TJ
机构
[1] Univ Queensland, Ctr Quantum Comp Technol, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Dept Phys, Brisbane, Qld 4072, Australia
[3] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[4] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
关键词
Algorithms - Fourier transforms - Matrix algebra - Physical properties - Probability - Problem solving - Search engines;
D O I
10.1103/PhysRevA.65.062312
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper demonstrates that how well a state performs as an input to Grover's search algorithm depends critically upon the entanglement present in that state; the more the entanglement, the less well the algorithm performs. More precisely, suppose we take a pure state input, and prior to running the algorithm apply local unitary operations to each qubit in order to maximize the probability P-max that the search algorithm succeeds. We prove that, for pure states, P-max is an entanglement monotone, in the sense that P-max can never be decreased by local operations and classical communication.
引用
收藏
页码:623121 / 623127
页数:7
相关论文
共 29 条
[1]   Noncommuting mixed states cannot be broadcast [J].
Barnum, H ;
Caves, CM ;
Fuchs, CA ;
Jozsa, R ;
Schumacher, B .
PHYSICAL REVIEW LETTERS, 1996, 76 (15) :2818-2821
[2]  
BARNUM H, QUANTPH0103155
[3]  
BARNUM H, QUANTPH9910072
[4]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[5]   Strengths and weaknesses of quantum computing [J].
Bennett, CH ;
Bernstein, E ;
Brassard, G ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1510-1523
[6]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[7]   Grover's quantum search algorithm for an arbitrary initial amplitude distribution [J].
Biham, E ;
Biham, O ;
Biron, D ;
Grassl, M ;
Lidar, DA .
PHYSICAL REVIEW A, 1999, 60 (04) :2742-2745
[8]  
Boyer M, 1998, FORTSCHR PHYS, V46, P493, DOI 10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO
[9]  
2-P
[10]   A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Lapan, J ;
Lundgren, A ;
Preda, D .
SCIENCE, 2001, 292 (5516) :472-476