DeepCRISPR: optimized CRISPR guide RNA design by deep learning

被引:294
作者
Chuai, Guohui [1 ,2 ]
Ma, Hanhui [5 ]
Yan, Jifang [1 ,2 ]
Chen, Ming [4 ]
Hong, Nanfang [1 ,2 ]
Xue, Dongyu [1 ,2 ]
Zhou, Chi [1 ,2 ]
Zhu, Chenyu [1 ,2 ]
Chen, Ke [1 ,2 ]
Duan, Bin [1 ,2 ]
Gu, Feng [6 ,7 ,8 ]
Qu, Sheng [1 ,2 ]
Huang, Deshuang [3 ]
Wei, Jia [4 ]
Liu, Qi [1 ,2 ]
机构
[1] Tongji Univ, Dept Endocrinol & Metab, Shanghai Peoples Hosp 10, Shanghai 20009, Peoples R China
[2] Tongji Univ, Sch Life Sci & Technol, Bioinformat Dept, Shanghai 20009, Peoples R China
[3] Tongji Univ, Sch Elect & Informat Engn, Machine Learning & Syst Biol Lab, Shanghai 201804, Peoples R China
[4] AstraZeneca, Innovat Ctr China, R&D Informat, 199 Liangjing Rd, Shanghai 201203, Peoples R China
[5] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China
[6] Wenzhou Med Univ, State Key Lab Cultivat Base, Eye Hosp, Wenzhou 325027, Zhejiang, Peoples R China
[7] Wenzhou Med Univ, Key Lab Vis Sci, Minist Hlth, Eye Hosp, Wenzhou 325027, Zhejiang, Peoples R China
[8] Wenzhou Med Univ, Zhejiang Prov Key Lab Ophthalmol & Optometry, Sch Ophthalmol & Optometry, Eye Hosp, Wenzhou 325027, Zhejiang, Peoples R China
来源
GENOME BIOLOGY | 2018年 / 19卷
基金
中国国家自然科学基金;
关键词
CRISPR system; Gene knockout; Deep learning; On-targets; Off-targets; OFF-TARGET CLEAVAGE; GENOME; SEQ; DNA; SPECIFICITIES; PREDICTION; NUCLEASES; SELECTION; SGRNAS;
D O I
10.1186/s13059-018-1459-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A major challenge for effective application of CRISPR systems is to accurately predict the single guide RNA (sgRNA) on-target knockout efficacy and off-target profile, which would facilitate the optimized design of sgRNAs with high sensitivity and specificity. Here we present DeepCRISPR, a comprehensive computational platform to unify sgRNA on-target and off-target site prediction into one framework with deep learning, surpassing available state-of-the-art in silico tools. In addition, DeepCRISPR fully automates the identification of sequence and epigenetic features that may affect sgRNA knockout efficacy in a data-driven manner. DeepCRISPR is available at http://www.deeperispr.net/.
引用
收藏
页数:18
相关论文
共 55 条
[11]  
Chuai G, 2018, DEEPCRISPR OPTIMIZED
[12]   In Silico Meets In Vivo: Towarcs Computational CRISPR-Based sgRNA Design [J].
Chuai, Guo-hui ;
Wang, Qi-Long ;
Liu, Qi .
TRENDS IN BIOTECHNOLOGY, 2017, 35 (01) :12-21
[13]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[14]   Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 [J].
Doench, John G. ;
Fusi, Nicolo ;
Sullender, Meagan ;
Hegde, Mudra ;
Vaimberg, Emma W. ;
Donovan, Katherine F. ;
Smith, Ian ;
Tothova, Zuzana ;
Wilen, Craig ;
Orchard, Robert ;
Virgin, Herbert W. ;
Listgarten, Jennifer ;
Root, David E. .
NATURE BIOTECHNOLOGY, 2016, 34 (02) :184-+
[15]   Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation [J].
Doench, John G. ;
Hartenian, Ella ;
Graham, Daniel B. ;
Tothova, Zuzana ;
Hegde, Mudra ;
Smith, Ian ;
Sullender, Meagan ;
Ebert, Benjamin L. ;
Xavier, Ramnik J. ;
Root, David E. .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1262-U130
[16]   The new frontier of genome engineering with CRISPR-Cas9 [J].
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2014, 346 (6213) :1077-+
[17]   The ENCODE (ENCyclopedia of DNA elements) Project [J].
Feingold, EA ;
Good, PJ ;
Guyer, MS ;
Kamholz, S ;
Liefer, L ;
Wetterstrand, K ;
Collins, FS ;
Gingeras, TR ;
Kampa, D ;
Sekinger, EA ;
Cheng, J ;
Hirsch, H ;
Ghosh, S ;
Zhu, Z ;
Pate, S ;
Piccolboni, A ;
Yang, A ;
Tammana, H ;
Bekiranov, S ;
Kapranov, P ;
Harrison, R ;
Church, G ;
Struhl, K ;
Ren, B ;
Kim, TH ;
Barrera, LO ;
Qu, C ;
Van Calcar, S ;
Luna, R ;
Glass, CK ;
Rosenfeld, MG ;
Guigo, R ;
Antonarakis, SE ;
Birney, E ;
Brent, M ;
Pachter, L ;
Reymond, A ;
Dermitzakis, ET ;
Dewey, C ;
Keefe, D ;
Denoeud, F ;
Lagarde, J ;
Ashurst, J ;
Hubbard, T ;
Wesselink, JJ ;
Castelo, R ;
Eyras, E ;
Myers, RM ;
Sidow, A ;
Batzoglou, S .
SCIENCE, 2004, 306 (5696) :636-640
[18]   Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases [J].
Frock, Richard L. ;
Hu, Jiazhi ;
Meyers, Robin M. ;
Ho, Yu-Jui ;
Kii, Erina ;
Alt, Frederick W. .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :179-186
[19]   High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells [J].
Fu, Yanfang ;
Foden, Jennifer A. ;
Khayter, Cyd ;
Maeder, Morgan L. ;
Reyon, Deepak ;
Joung, J. Keith ;
Sander, Jeffry D. .
NATURE BIOTECHNOLOGY, 2013, 31 (09) :822-+
[20]   Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR [J].
Haeussler, Maximilian ;
Schoenig, Kai ;
Eckert, Helene ;
Eschstruth, Alexis ;
Mianne, Joffrey ;
Renaud, Jean-Baptiste ;
Schneider-Maunoury, Sylvie ;
Shkumatava, Alena ;
Teboul, Lydia ;
Kent, Jim ;
Joly, Jean-Stephane ;
Concordet, Jean-Paul .
GENOME BIOLOGY, 2016, 17