From factors to actors: Computational sociology and agent-based modeling

被引:718
作者
Macy, MW [1 ]
Willer, R [1 ]
机构
[1] Cornell Univ, Dept Sociol, Ithaca, NY 14853 USA
关键词
simulation; complexity; emergence; self-organization; cellular automata; genetic algorithm;
D O I
10.1146/annurev.soc.28.110601.141117
中图分类号
C91 [社会学];
学科分类号
030301 ; 1204 ;
摘要
Sociologists often model social processes as interactions among variables. We review an alternative approach that models social life as interactions among adaptive agents who influence one another in response to the influence they receive. These agent-based models (ABMs) show how simple and predictable local interactions can generate familiar but enigmatic global patterns, such as the diffusion of information, emergence of norms, coordination of conventions, or participation in collective action. Emergent social patterns can also appear unexpectedly and then just as dramatically transform or disappear, as happens in revolutions, market crashes, fads, and feeding frenzies. ABMs provide theoretical leverage where the global patterns of interest are more than the aggregation of individual attributes, but at the same time, the emergent pattern cannot be understood without a bottom up dynamical model of the microfoundations at the relational level. We begin with a brief historical sketch of the shift from "factors" to "actors" in computational sociology that shows how agent-based modeling differs fundamentally from earlier sociological uses of computer simulation. We then review recent contributions focused on the emergence of social structure and social order out of local interaction. Although sociology has lagged behind other social sciences in appreciating this new methodology, a distinctive sociological contribution is evident in the papers we review. First, theoretical interest focuses on dynamic social networks that shape and are shaped by agent interaction. Second, ABMs are used to perform virtual experiments that test macrosociological theories by manipulating structural factors like network topology, social stratification, or spatial mobility. We conclude our review with a series of recommendations for realizing the rich sociological potential of this approach.
引用
收藏
页码:143 / 166
页数:24
相关论文
共 71 条
[21]   Reciprocal altruism under conditions of partner selection [J].
de Vos, H ;
Smaniotto, R ;
Elsas, DA .
RATIONALITY AND SOCIETY, 2001, 13 (02) :139-183
[22]   A SYSTEM OF IAC NEURAL NETWORKS AS THE BASIS FOR SELF-ORGANIZATION IN A SOCIOLOGICAL DYNAMICAL SYSTEM SIMULATION [J].
DUONG, DV ;
REILLY, KD .
BEHAVIORAL SCIENCE, 1995, 40 (04) :275-303
[23]  
Durkheim E, 1982, RULES SOCIOLOGICAL M
[24]  
EPSTEIN JM, 1996, GROWING ARTIFICAL SO
[25]   Cooperation, mimesis, and local interaction [J].
Eshel, I ;
Herreiner, DK ;
Samuelson, L ;
Sansone, E ;
Shaked, A .
SOCIOLOGICAL METHODS & RESEARCH, 2000, 28 (03) :341-364
[26]   The weakness of strong ties: Collective action failure in a highly cohesive group [J].
Flache, A ;
Macy, MW .
JOURNAL OF MATHEMATICAL SOCIOLOGY, 1996, 21 (1-2) :3-28
[27]   Rationality vs. Learning in the Evolution of Solidarity Networks: A Theoretical Comparison [J].
Andreas Flache ;
Rainer Hegselmann .
Computational & Mathematical Organization Theory, 1999, 5 (2) :97-127
[28]  
Flache A, 2001, JASSS-J ARTIF SOC S, V4
[29]  
Forrester J.W., 1971, WORLD DYNAMICS
[30]  
Gilbert N., 1999, SIMULATION SOCIAL SC