CMOS low-noise amplifier design optimization techniques

被引:392
作者
Nguyen, TK [1 ]
Kim, CH
Ihm, GJ
Yang, MS
Lee, SG
机构
[1] Informat & Communcat Univ, Sch Engn, Taejon 305732, South Korea
[2] Teltron Inc, Taejon 350343, South Korea
关键词
CMOS; low-noise amplifier (LNA); low power; low voltage; noise optimization; RF; Zigbee;
D O I
10.1109/TMTT.2004.827014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reviews and analyzes four reported low-noise amplifier (LNA) design techniques applied to the cascode topology based on CMOS technology: classical noise matching, simultaneous noise and input matching (SNIM), power-constrained noise optimization, and power-constrained simultaneous noise and input matching (PCSNIM) techniques. Very simple and insightful sets of noise parameter expressions are newly introduced for the SNIM and PCSNIM techniques. Based on the noise parameter equations, this paper provides clear understanding of the design principles, fundamental limitations, and advantages of the four reported LNA design techniques so that the designers can get the overall LNA design perspective. As a demonstration for the proposed design principle of the PCSNIM technique, a very low-power folded-cascode LNA is implemented based on 0.25-mum CMOS technology for 900-MHz Zigbee applications. Measurement results show the noise figure of 1.35 dB, power gain of 12 dB, and input third-order intermodulation product of 4 dBm while dissipating 1.6 mA from a 1.25-V supply (0.7 mA for the input NMOS transistor only). The overall behavior of the implemented LNA shows good agreement with theoretical predictions.
引用
收藏
页码:1433 / 1442
页数:10
相关论文
共 29 条
[1]  
Ali F., 1992, IEEE Microwave and Guided Wave Letters, V2, P70, DOI 10.1109/75.122414
[2]   Noise optimization of an inductively degenerated CMOS low noise amplifier [J].
Andreani, P ;
Sjöland, H .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 2001, 48 (09) :835-841
[3]   The Pospieszalski noise model and the imaginary part of the optimum noise source impedance of extrinsic or packaged FET's [J].
Boglione, L ;
Pollard, RD ;
Postoyalko, V .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1997, 7 (09) :270-272
[4]   Optimum noise-source reflection-coefficient design with feedback amplifiers [J].
Boglione, L ;
Pollard, RD ;
Postoyalko, V .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1997, 45 (03) :402-407
[5]   A 900-MHz, 0.8-μm CMOS low noise amplifier with 1.2-dB noise figure [J].
Floyd, BA ;
Mehta, J ;
Gamero, C ;
O, KK .
PROCEEDINGS OF THE IEEE 1999 CUSTOM INTEGRATED CIRCUITS CONFERENCE, 1999, :661-664
[6]   A noise optimization technique for integrated low-noise amplifiers [J].
Goo, JS ;
Ahn, HT ;
Ladwig, DJ ;
Yu, ZP ;
Lee, TH ;
Dutton, RW .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2002, 37 (08) :994-1002
[7]  
HARA S, 1993, DIG PAP IEEE MICROW, P67, DOI 10.1109/MCS.1993.247475
[8]  
HAUS HA, 1960, P IRE, V48, P69, DOI DOI 10.1109/JRPROC.1960.287381
[9]   3V low noise amplifier implemented using a 0.8 mu m CMOS process with three metal layers for 900MHz operation [J].
Ho, YC ;
Biyani, M ;
Colvin, J ;
Smithhisler, C ;
O, K .
ELECTRONICS LETTERS, 1996, 32 (13) :1191-1193
[10]   5-GHz CMOS wireless LANs [J].
Lee, TH ;
Samavati, H ;
Rategh, HR .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2002, 50 (01) :268-280