Understanding functional miRNA-target interactions in vivo by site-specific genome engineering

被引:63
作者
Bassett, Andrew R. [1 ]
Azzam, Ghows [2 ]
Wheatley, Lucy [2 ]
Tibbit, Charlotte [1 ]
Rajakumar, Timothy [2 ]
McGowan, Simon [3 ]
Stanger, Nathan [2 ]
Ewels, Philip Andrew [4 ]
Taylor, Stephen [3 ]
Ponting, Chris P.
Liu, Ji-Long [1 ]
Sauka-Spengler, Tatjana [2 ]
Fulga, Tudor A. [2 ]
机构
[1] Univ Oxford, MRC, Funct Genom Unit, Dept Physiol Anat & Genet, Oxford OX1 3PT, England
[2] Univ Oxford, Weatherall Inst Mol Med, Radcliffe Dept Med, Oxford OX3 9DS, England
[3] Univ Oxford, Weatherall Inst Mol Med, Radcliffe Dept Med, Computat Biol Res Grp, Oxford OX3 9DS, England
[4] Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, S-10691 Stockholm, Sweden
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
英国医学研究理事会; 欧洲研究理事会;
关键词
CRISPR-CAS9; SYSTEM; HUMAN-CELLS; EFFICIENT; DROSOPHILA; IDENTIFICATION; EXPRESSION; REPRESSION; BINDING; PROTEIN; DESIGN;
D O I
10.1038/ncomms5640
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
MicroRNA (miRNA) target recognition is largely dictated by short 'seed' sequences, and single miRNAs therefore have the potential to regulate a large number of genes. Understanding the contribution of specific miRNA-target interactions to the regulation of biological processes in vivo remains challenging. Here we use transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technologies to interrogate the functional relevance of predicted miRNA response elements (MREs) to post-transcriptional silencing in zebrafish and Drosophila. We also demonstrate an effective strategy that uses CRISPR-mediated homology-directed repair with short oligonucleotide donors for the assessment of MRE activity in human cells. These methods facilitate analysis of the direct phenotypic consequences resulting from blocking specific miRNA-MRE interactions at any point during development.
引用
收藏
页数:11
相关论文
共 31 条
[21]   Method for isolation of PCR-ready genomic DNA from zebrafish tissues [J].
Meeker, Nathan D. ;
Hutchinson, Sarah A. ;
Ho, Linh ;
Trecle, Nikolaus S. .
BIOTECHNIQUES, 2007, 43 (05) :610-+
[22]   microRNA target predictions in animals [J].
Rajewsky, Nikolaus .
NATURE GENETICS, 2006, 38 (Suppl 6) :S8-S13
[23]   Genome engineering using the CRISPR-Cas9 system [J].
Ran, F. Ann ;
Hsu, Patrick D. ;
Wright, Jason ;
Agarwala, Vineeta ;
Scott, David A. ;
Zhang, Feng .
NATURE PROTOCOLS, 2013, 8 (11) :2281-2308
[24]   Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells [J].
Shalem, Ophir ;
Sanjana, Neville E. ;
Hartenian, Ella ;
Shi, Xi ;
Scott, David A. ;
Mikkelsen, Tarjei S. ;
Heckl, Dirk ;
Ebert, Benjamin L. ;
Root, David E. ;
Doench, John G. ;
Zhang, Feng .
SCIENCE, 2014, 343 (6166) :84-87
[25]   Use of target protector morpholinos to analyze the physiological roles of specific miRNA-mRNA pairs in vivo [J].
Staton, Alison A. ;
Giraldez, Antonio J. .
NATURE PROTOCOLS, 2011, 6 (12) :2035-2049
[26]   miRNA regulation of Sdf1 chemokine signaling provides genetic robustness to germ cell migration [J].
Staton, Alison A. ;
Knaut, Holger ;
Giraldez, Antonio J. .
NATURE GENETICS, 2011, 43 (03) :204-U45
[27]   Adult-specific functions of animal microRNAs [J].
Sun, Kailiang ;
Lai, Eric C. .
NATURE REVIEWS GENETICS, 2013, 14 (08) :535-548
[28]   BatMis: a fast algorithm for k-mismatch mapping [J].
Tennakoon, Chandana ;
Purbojati, Rikky W. ;
Sung, Wing-Kin .
BIOINFORMATICS, 2012, 28 (16) :2122-2128
[29]   Experimental strategies for microRNA target identification [J].
Thomson, Daniel W. ;
Bracken, Cameron P. ;
Goodall, Gregory J. .
NUCLEIC ACIDS RESEARCH, 2011, 39 (16) :6845-6853
[30]   Genetic Screens in Human Cells Using the CRISPR-Cas9 System [J].
Wang, Tim ;
Wei, Jenny J. ;
Sabatini, David M. ;
Lander, Eric S. .
SCIENCE, 2014, 343 (6166) :80-84