Nanoscale Conductivity Contrast by Scattering-Type Near-Field Optical Microscopy in the Visible, Infrared and THz Domains

被引:31
作者
Keilmann, Fritz [1 ,2 ]
Huber, Andreas J. [3 ,4 ,5 ]
Hillenbrand, Rainer [4 ,5 ]
机构
[1] Max Planck Inst Quantum Opt, D-85714 Garching, Germany
[2] Ctr NanoSci, D-85714 Garching, Germany
[3] Max Planck Inst Biochem, D-82152 Martinsried, Germany
[4] Nanoopt Lab CIC NanoGUNE Consolider, Donostia San Sebastian 20018, Spain
[5] Ctr NanoSci, Donostia San Sebastian 20018, Spain
关键词
Metallic conduction; Semiconductors; Correlated conductors; Conductivity contrast; Near-field optical microscopy; Visible near-field microscopy; Infrared near-field microscopy; THz near-field microscopy; RESOLUTION; RECOGNITION; SURFACE;
D O I
10.1007/s10762-009-9525-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate the wide application potential of optical near-field microscopy for mapping samples with locally varying conductivity. The apertureless, scattering-type optical near-field microscope (s-SNOM) operates on an AFM basis with an added light-scattering channel, wherein a standard cantilevered tip suffices to accomodate the full spectral range from visible to THz frequencies. The optical maps appear in amplitude and phase contrast, simultaneously with the topography map, at a spatial resolution of typically 20 nm. Visible and near-infrared operation is best suited for distinguishing metals, while a sensitive response to semiconductors is ideally provided with infrared and THz operation. Various types of conductivity spectral features can be explored in specific regions, corresponding to the elementary excitation linked to e.g. superconductivity, electron correlation, or low-dimensional conduction.
引用
收藏
页码:1255 / 1268
页数:14
相关论文
共 46 条
[1]   SUPER-RESOLUTION APERTURE SCANNING MICROSCOPE [J].
ASH, EA ;
NICHOLLS, G .
NATURE, 1972, 237 (5357) :510-&
[2]   Antenna-mediated back-scattering efficiency in infrared near-field microscopy [J].
Brehm, M. ;
Schliesser, A. ;
Cajko, F. ;
Tsukerman, I. ;
Keilmann, F. .
OPTICS EXPRESS, 2008, 16 (15) :11203-11215
[3]   Spectroscopic near-field microscopy using frequency combs in the mid-infrared [J].
Brehm, Markus ;
Schliesser, Albert ;
Keilmann, Fritz .
OPTICS EXPRESS, 2006, 14 (23) :11222-11233
[4]   Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution [J].
Brehm, Markus ;
Taubner, Thomas ;
Hillenbrand, Rainer ;
Keilmann, Fritz .
NANO LETTERS, 2006, 6 (07) :1307-1310
[5]   Terahertz microscopy of charge carriers in semiconductors [J].
Buersgens, F ;
Kersting, R ;
Chen, HT .
APPLIED PHYSICS LETTERS, 2006, 88 (11)
[6]   Terahertz imaging with nanometer resolution [J].
Chen, HT ;
Kersting, R ;
Cho, GC .
APPLIED PHYSICS LETTERS, 2003, 83 (15) :3009-3011
[7]  
Cvitkovic A, 2007, NANO LETT, V7, P3177, DOI 10.1021/nI071775+
[8]   Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy [J].
Cvitkovic, A. ;
Ocelic, N. ;
Hillenbrand, R. .
OPTICS EXPRESS, 2007, 15 (14) :8550-8565
[9]   Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap [J].
Cvitkovic, A. ;
Ocelic, N. ;
Aizpurua, J. ;
Guckenberger, R. ;
Hillenbrand, R. .
PHYSICAL REVIEW LETTERS, 2006, 97 (06)
[10]   Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide [J].
Driscoll, T. ;
Palit, S. ;
Qazilbash, M. M. ;
Brehm, M. ;
Keilmann, F. ;
Chae, Byung-Gyu ;
Yun, Sun-Jin ;
Kim, Hyun-Tak ;
Cho, S. Y. ;
Jokerst, N. Marie ;
Smith, D. R. ;
Basov, D. N. .
APPLIED PHYSICS LETTERS, 2008, 93 (02)