Convergence of approximate and incremental subgradient methods for convex optimization

被引:135
作者
Kiwiel, KC [1 ]
机构
[1] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
关键词
nondifferentiable optimization; convex programming; subgradient optimization; approximate subgradients; efficiency;
D O I
10.1137/S1052623400376366
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a unified convergence framework for approximate subgradient methods that covers various stepsize rules (including both diminishing and nonvanishing stepsizes), convergence in objective values, and convergence to a neighborhood of the optimal set. We discuss ways of ensuring the boundedness of the iterates and give efficiency estimates. Our results are extended to incremental subgradient methods for minimizing a sum of convex functions, which have recently been shown to be promising for various large-scale problems, including those arising from Lagrangian relaxation.
引用
收藏
页码:807 / 840
页数:34
相关论文
共 56 条
[1]   On the projected subgradient method for nonsmooth convex optimization in a Hilbert space [J].
Alber, YI ;
Iusem, AN ;
Solodov, MV .
MATHEMATICAL PROGRAMMING, 1998, 81 (01) :23-35
[2]  
[Anonymous], 1985, NONDIFFERENTIABLE OP
[3]  
Bazaraa M. S., 2013, NONLINEAR PROGRAMMIN
[4]   The ordered subsets mirror descent optimization method with applications to tomography [J].
Ben-Tal, A ;
Margalit, T ;
Nemirovski, A .
SIAM JOURNAL ON OPTIMIZATION, 2001, 12 (01) :79-108
[5]  
Bertsekas D., 1999, NONLINEAR PROGRAMMIN
[6]   A new class of incremental gradient methods for least squares problems [J].
Bertsekas, DP .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (04) :913-926
[7]   Gradient convergence in gradient methods with errors [J].
Bertsekas, DP ;
Tsitsiklis, JN .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (03) :627-642
[8]   A generalized subgradient method with relaxation step [J].
Brannlund, U .
MATHEMATICAL PROGRAMMING, 1995, 71 (02) :207-219
[9]  
BRANNLUND U, 1993, THESIS ROYAL I TECHN
[10]   CONVERGENCE OF SOME ALGORITHMS FOR CONVEX MINIMIZATION [J].
CORREA, R ;
LEMARECHAL, C .
MATHEMATICAL PROGRAMMING, 1993, 62 (02) :261-275