Stacking and T-shape competition in aromatic-aromatic amino acid interactions

被引:233
作者
Chelli, R
Gervasio, FL
Procacci, P
Schettino, V
机构
[1] Univ Florence, Dipartimento Chim, I-50019 Sesto Fiorentino, Italy
[2] European Lab Nonlinear Spectroscopy, LENS, I-50019 Sesto Fiorentino, Italy
关键词
D O I
10.1021/ja0121639
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The potential of mean force of interacting aromatic amino acids is calculated using molecular dynamics simulations. The free energy surface is determined in order to study stacking and T-shape competition for phenylalanine-phenylalanine (Phe-Phe), phenylalanine-tyrosine (Phe-Tyr), and tyrosine-tyrosine (Tyr-Tyr) complexes in vacuo, water, carbon tetrachloride, and methanol. Stacked structures are favored in all solvents with the exception of the Tyr-Tyr complex in carbon tetrachloride, where T-shaped structures are also important. The effect of anchoring the two alpha-carbons (C-alpha) at selected distances is investigated. We find that short and large C-alpha-C-alpha distances favor stacked and T-shaped structures, respectively. We analyze a set of 2396 protein structures resolved experimentally. Comparison of theoretical free energies for the complexes to the experimental analogue shows that Tyr-Tyr interaction occurs mainly at the protein surface, while Phe-Tyr and Phe-Phe interactions are more frequent in the hydrophobic protein core. This is confirmed by the Voronoi polyhedron analysis on the database protein structures. As found from the free energy calculation, analysis of the protein database has shown that proximal and distal interacting aromatic residues are predominantly stacked and T-shaped, respectively.
引用
收藏
页码:6133 / 6143
页数:11
相关论文
共 42 条
[1]  
Allen M. P., 1987, COMPUTER SIMULATIONS, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]   GEOMETRY OF INTERPLANAR RESIDUE CONTACTS IN PROTEIN STRUCTURES [J].
BROCCHIERI, L ;
KARLIN, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (20) :9297-9301
[5]   AROMATIC-AROMATIC INTERACTION - A MECHANISM OF PROTEIN-STRUCTURE STABILIZATION [J].
BURLEY, SK ;
PETSKO, GA .
SCIENCE, 1985, 229 (4708) :23-28
[6]  
Chandler D., 1987, INTRO MODERN STAT ME
[7]   Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method [J].
Chelli, R ;
Ciabatti, S ;
Cardini, G ;
Righini, R ;
Procacci, P .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (09) :4218-4229
[8]   Glycerol condensed phases Part I. A molecular dynamics study [J].
Chelli, R ;
Procacci, P ;
Cardini, G ;
Della Valle, RG ;
Califano, S .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (05) :871-877
[9]   Glycerol condensed phases part II. A molecular dynamics study of the conformational structure and hydrogen bonding [J].
Chelli, R ;
Procacci, P ;
Cardini, G ;
Califano, S .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (05) :879-885
[10]   Benzene dimer: A good model for pi-pi interactions in proteins? A comparison between the benzene and the toluene dimers in the cas phase and in an aqueous solution [J].
Chipot, C ;
Jaffe, R ;
Maigret, B ;
Pearlman, DA ;
Kollman, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (45) :11217-11224