Information-theoretic inequalities for contoured probability distributions

被引:29
作者
Guleryuz, OG
Lutwak, E
Yang, D
Zhang, GY
机构
[1] Polytech Univ, Dept Elect Engn, Brooklyn, NY 11201 USA
[2] Polytech Univ, Dept Math, Brooklyn, NY 11201 USA
关键词
Brunn-Minkowski; convex bodies; elliptically contoured; entropy; Fisher information; inequalities; isoperimetric inequalities;
D O I
10.1109/TIT.2002.800496
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that for a special class of probability distributions that we call contoured distributions, information-theoretic invariants and inequalities are equivalent to geometric invariants and inequalities of bodies in Euclidean space associated with the distributions. Using this, we obtain characterizations of contoured distributions with extremal Shannon and Renyi entropy., We also obtain a new reverse information-theoretic inequality for contoured distributions.
引用
收藏
页码:2377 / 2383
页数:7
相关论文
共 20 条
[1]   On sharp Sobolev embedding and the logarithmic Sobolev inequality [J].
Beckner, W ;
Pearson, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 :80-84
[2]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[3]  
Beckner W, 1998, INT MATH RES NOTICES, V1998, P67
[4]   PITTS INEQUALITY AND THE UNCERTAINTY PRINCIPLE [J].
BECKNER, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) :1897-1905
[5]   Geometric asymptotics and the logarithmic Sobolev inequality [J].
Beckner, W .
FORUM MATHEMATICUM, 1999, 11 (01) :105-137
[6]   BEST CONSTANTS IN YOUNGS INEQUALITY, ITS CONVERSE, AND ITS GENERALIZATION TO MORE THAN 3 FUNCTIONS [J].
BRASCAMP, HJ ;
LIEB, EH .
ADVANCES IN MATHEMATICS, 1976, 20 (02) :151-173
[7]   SUPERADDITIVITY OF FISHER INFORMATION AND LOGARITHMIC SOBOLEV INEQUALITIES [J].
CARLEN, EA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 101 (01) :194-211
[8]   ON THE SIMILARITY OF THE ENTROPY POWER INEQUALITY AND THE BRUNN-MINKOWSKI INEQUALITY [J].
COSTA, MHM ;
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (06) :837-839
[9]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[10]   INFORMATION THEORETIC INEQUALITIES [J].
DEMBO, A ;
COVER, TM ;
THOMAS, JA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) :1501-1518