Tunable Transport Gap in Phosphorene

被引:687
作者
Das, Saptarshi [1 ]
Zhang, Wei [2 ]
Demarteau, Marcel [3 ]
Hoffmann, Axel [2 ]
Dubey, Madan [4 ]
Roelofs, Andreas [1 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA
[4] US Army Res Lab, Adelphi, MD 20783 USA
关键词
Phosphorene; transport gap; field effect transistor; mobility; FIELD-EFFECT TRANSISTORS;
D O I
10.1021/nl5025535
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this article, we experimentally demonstrate that the transport gap of phosphorene can be tuned monotonically from similar to 0.3 to similar to 1.0 eV when the flake thickness is scaled down from bulk to a single layer. As a consequence, the ON current, the OFF current, and the current ON/OFF ratios of phosphorene field effect transistors (FETs) were found to be significantly impacted by the layer thickness. The transport gap was determined from the transfer characteristics of phosphorene FETs using a robust technique that has not been reported before. The detailed mathematical model is also provided. By scaling the thickness of the gate oxide, we were also able to demonstrate enhanced ambipolar conduction in monolayer and few layer phosphorene FETs. The asymmetry of the electron and the hole current was found to be dependent on the layer thickness that can be explained by dynamic changes of the metal Fermi level with the energy band of phosphorene depending on the layer number. We also extracted the Schottky barrier heights for both the electron and the hole injection as a function of the layer thickness. Finally, we discuss the dependence of field effect hole mobility of phosphorene on temperature and carrier concentration.
引用
收藏
页码:5733 / 5739
页数:7
相关论文
共 23 条
[1]  
Das S., 2013, DEV RES C DRC NOTR D, P153
[2]   All Two-Dimensional, Flexible, Transparent, and Thinnest Thin Film Transistor [J].
Das, Saptarshi ;
Gulotty, Richard ;
Sumant, Anirudha V. ;
Roelofs, Andreas .
NANO LETTERS, 2014, 14 (05) :2861-2866
[3]   Toward Low-Power Electronics: Tunneling Phenomena in Transition Metal Dichalcogenides [J].
Das, Saptarshi ;
Prakash, Abhijith ;
Salazar, Ramon ;
Appenzeller, Joerg .
ACS NANO, 2014, 8 (02) :1681-1689
[4]   WSe2 field effect transistors with enhanced ambipolar characteristics [J].
Das, Saptarshi ;
Appenzeller, Joerg .
APPLIED PHYSICS LETTERS, 2013, 103 (10)
[5]   Where Does the Current Flow in Two-Dimensional Layered Systems? [J].
Das, Saptarshi ;
Appenzeller, Joerg .
NANO LETTERS, 2013, 13 (07) :3396-3402
[6]   Screening and interlayer coupling in multilayer MoS2 [J].
Das, Saptarshi ;
Appenzeller, Joerg .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2013, 7 (04) :268-273
[7]   High Performance Multilayer MoS2 Transistors with Scandium Contacts [J].
Das, Saptarshi ;
Chen, Hong-Yan ;
Penumatcha, Ashish Verma ;
Appenzeller, Joerg .
NANO LETTERS, 2013, 13 (01) :100-105
[8]  
Datta S., 2013, Quantum Transport: atom to Transistor
[9]  
Fang H, 2012, NANO LETT, V12, P3788, DOI [10.1021/nl301702r, 10.1021/nl3040674]
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191