High-throughput computational and experimental techniques in structural genomics

被引:47
作者
Chance, MR [1 ]
Fiser, A
Sali, A
Pieper, U
Eswar, N
Xu, GP
Fajardo, JE
Radhakannan, T
Marinkovic, N
机构
[1] Albert Einstein Coll Med, New York Struct Genom Res Consortium, Bronx, NY 10461 USA
[2] Albert Einstein Coll Med, Dept Physiol & Biophys, Bronx, NY 10461 USA
[3] Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA
[4] Albert Einstein Coll Med, Ctr Synchrotron Biosci, Bronx, NY 10461 USA
[5] Univ Calif San Francisco, Dept Biopharmaceut Sci, San Francisco, CA 94143 USA
[6] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
[7] Univ Calif San Francisco, Calif Inst Quantitat Biomed Res, San Francisco, CA 94143 USA
关键词
D O I
10.1101/gr.2537904
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Structural genomics has as its goal the provision of structural information for all possible ORF sequences through a combination of experimental and computational approaches. The access to genome sequences and cloning resources from an ever-widening array of organisms is driving high-throughput structural studies by the New York Structural Genomics Research Consortium. In this report, we outline the progress of the Consortium in establishing its pipeline for structural genomics, and some of the experimental and bioinformatics efforts leading to structural annotation of proteins. The Consortium has established a pipeline for structural biology studies, automated modeling of ORF sequences using solved (template) structures, and a novel high-throughput approach (metallomics) to examining the metal binding to purified protein targets. The Consortium has so far produced 493 purified proteins from >1077 expression vectors. A total of 95 have resulted in crystal structures, and 81 are deposited in the Protein Data Bank (PDB). Comparative modeling of these structures has generated >40,000 structural models. We also initiated a high-throughput metal analysis of the purified proteins; this has determined that 10%-15% of the targets contain a stoichiometric structural or catalytic transition metal atom. The progress of the structural genomics centers in the U.S. and around the world suggests that the goal of providing useful structural information on most all ORF domains will be realized. This projected resource will provide structural biology information important to understanding the function of most proteins of the cell.
引用
收藏
页码:2145 / 2154
页数:10
相关论文
共 51 条
[31]   C-elegans ORFeome version 1.1:: experimental verification of the genome annotation and resource for proteome-scale protein expression [J].
Reboul, J ;
Vaglio, P ;
Rual, JF ;
Lamesch, P ;
Martinez, M ;
Armstrong, CM ;
Li, SM ;
Jacotot, L ;
Bertin, N ;
Janky, R ;
Moore, T ;
Hudson, JR ;
Hartley, JL ;
Brasch, MA ;
Vandenhaute, J ;
Boulton, S ;
Endress, GA ;
Jenna, S ;
Chevet, E ;
Papasotiropoulos, V ;
Tolias, PP ;
Ptacek, J ;
Snyder, M ;
Huang, R ;
Chance, MR ;
Lee, HM ;
Doucette-Stamm, L ;
Hill, DE ;
Vidal, M .
NATURE GENETICS, 2003, 34 (01) :35-41
[32]   From words to literature in structural proteomics [J].
Sali, A ;
Glaeser, R ;
Earnest, T ;
Baumeister, W .
NATURE, 2003, 422 (6928) :216-225
[33]   COMPARATIVE PROTEIN MODELING BY SATISFACTION OF SPATIAL RESTRAINTS [J].
SALI, A .
MOLECULAR MEDICINE TODAY, 1995, 1 (06) :270-277
[34]   100,000 protein structures for the biologist [J].
Andrej Šali .
Nature Structural Biology, 1998, 5 (12) :1029-1032
[35]   ModBase, a database of annotated comparative protein structure models [J].
Sánchez, R ;
Pieper, U ;
Mirkovic, N ;
de Bakker, PIW ;
Wittenstein, E ;
Sali, A .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :250-253
[36]   Large-scale protein structure modeling of the Saccharomyces cerevisiae genome [J].
Sánchez, R ;
Sali, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) :13597-13602
[37]   Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements [J].
Schäffer, AA ;
Aravind, L ;
Madden, TL ;
Shavirin, S ;
Spouge, JL ;
Wolf, YI ;
Koonin, EV ;
Altschul, SF .
NUCLEIC ACIDS RESEARCH, 2001, 29 (14) :2994-3005
[38]  
SHI W, 2003, PROTEIN CHIPS BIOCHI, P299
[39]   The genome sequence of Caenorhabditis briggsae:: A platform for comparative genomics [J].
Stein, LD ;
Bao, ZR ;
Blasiar, D ;
Blumenthal, T ;
Brent, MR ;
Chen, NS ;
Chinwalla, A ;
Clarke, L ;
Clee, C ;
Coghlan, A ;
Coulson, A ;
D'Eustachio, P ;
Fitch, DHA ;
Fulton, LA ;
Fulton, RE ;
Griffiths-Jones, S ;
Harris, TW ;
Hillier, LW ;
Kamath, R ;
Kuwabara, PE ;
Mardis, ER ;
Marra, MA ;
Miner, TL ;
Minx, P ;
Mullikin, JC ;
Plumb, RW ;
Rogers, J ;
Schein, JE ;
Sohrmann, M ;
Spieth, J ;
Stajich, JE ;
Wei, CC ;
Willey, D ;
Wilson, RK ;
Durbin, R ;
Waterston, RH .
PLOS BIOLOGY, 2003, 1 (02) :166-+
[40]   NUCLEOCAPSID ZINC FINGERS DETECTED IN RETROVIRUSES - EXAFS STUDIES OF INTACT VIRUSES AND THE SOLUTION-STATE STRUCTURE OF THE NUCLEOCAPSID PROTEIN FROM HIV-1 [J].
SUMMERS, MF ;
HENDERSON, LE ;
CHANCE, MR ;
BESS, JW ;
SOUTH, TL ;
BLAKE, PR ;
SAGI, I ;
PEREZALVARADO, G ;
SOWDER, RC ;
HARE, DR ;
ARTHUR, LO .
PROTEIN SCIENCE, 1992, 1 (05) :563-574