A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives

被引:91
作者
Baleanu, Dumitru [1 ,2 ]
Trujillo, Juan I. [3 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, R-76900 Magurele, Romania
[3] Univ La Laguna, Dept Anal Matemat, Tenerife 38271, Spain
关键词
Fractional Lagrangians; Fractional calculus; Fractional Caputo derivative; Fractional Euler-Lagrange equations; Faa di Bruno formula; LINEAR VELOCITIES; CLASSICAL FIELDS; FORMULATION; MECHANICS; FORMALISM;
D O I
10.1016/j.cnsns.2009.05.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we have investigated the fractional Caputo derivative of a composition function. The obtained results were applied to investigate the fractional Euler-Lagrange and Hamilton equations for constrained systems. The approach was applied within an illustrative. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1111 / 1115
页数:5
相关论文
共 36 条
[1]  
Abramowitz M., 1972, Handbook of mathematical functions, V10th
[2]   A Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems [J].
Agrawal, Om P. ;
Baleanu, Dumitru .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1269-1281
[3]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[4]   About fractional supersymmetric quantum mechanics [J].
Baleanu, D ;
Muslih, SI .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (09) :1063-1066
[5]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[6]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[7]   On exact solutions of a class of fractional Euler-Lagrange equations [J].
Baleanu, Dumitru ;
Trujillo, Juan J. .
NONLINEAR DYNAMICS, 2008, 52 (04) :331-335
[8]  
BERING K, NOTE NONLOCALITY OST
[9]  
GOMIS J, 2001, PHYS REV D, V63
[10]  
Gorenflo R., 1997, Fractional calculus: integral and differential equations of fractional order, DOI DOI 10.1007/978-3-7091-2664-6_5